

MODÉLISATION ET DIMENSIONNEMENT DE STATIONS DE RECHARGE DE BUS À HYDROGÈNE - APPLICATION À LA RÉUNION -

Agnès FRANÇOIS^{a,b}, Robin ROCHE^a, Dominique GRONDIN^b, Michel BENNE^b

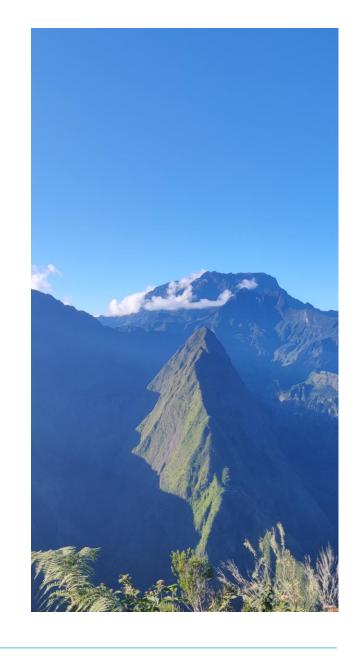
^a UTBM, CNRS, institut FEMTO-ST, F-90000 Belfort, France

^b ENERGY-lab, Université de La Réunion, Saint-Denis, France

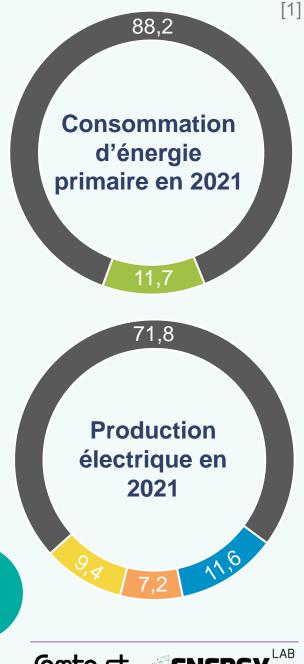
agnes.francois@utbm.fr

PLAN

- Positionnement de l'étude
- Contexte
- Méthodologie suivie
- Résultats
- Limites et perspectives



POSITIONNEMENT ET OBJECTIFS


- Etude locale d'une flotte de bus à hydrogène
- Etude de l'intégration de l'hydrogène à l'échelle de l'île

- Faisabilité d'un réseau de bus à hydrogène à long terme sur l'île
- Quels impacts sur le réseau électrique de l'île ?
- Quelle configuration pour les stations de recharge ?

CONTEXTE ÉNERGÉTIQUE RÉUNIONNAIS

- Imports fossiles
- Renouvelable
- PV/éolien
- **Biomasse**
- Hydraulique

- Aucune interconnexion
- Imports de matières premières par bateau
- Dépendance aux véhicules individuels

- Demande en chaleur négligeable
- Potentiels énergétiques non exploités : géothermie, énergies de la mer, éolien offshore

Objectif d'autonomie énergétique 2030

CONTEXTE GÉNÉRAL BUS

[2]

- Règlementation : 100 % bus à faibles émissions à partir de 2025
- Bus à hydrogène : 0,05 % du parc français en 2020
- Recharge en hydrogène plus rapide
- Bus à hydrogène avec plus d'autonomie

5 réseaux urbains

• + 5 300 km de lignes (2017)

• + 33 000 000 km parcourus en 2017

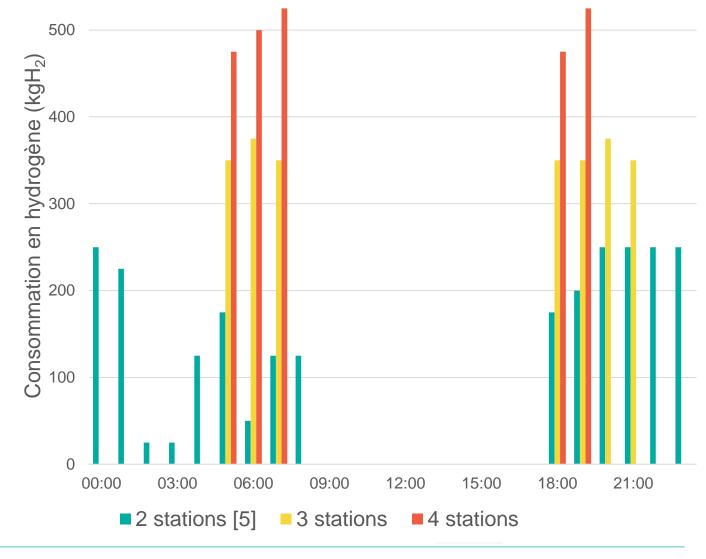
• 1,9 % de la consommation du secteur du transport

[3]

MÉTHODOLOGIE

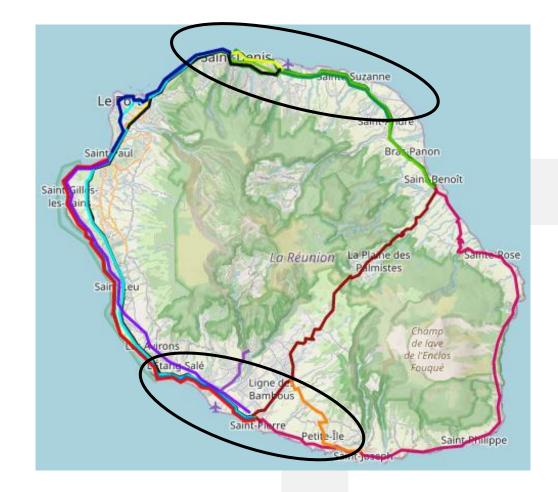
- Horizon 2050
- 17 lignes
- Augmentation de la fréquence de passage des bus
- Augmentation du nombre de bus

Horizon	Kilométrage annuel	Kilomètres jour ouvrable	Kilomètres dimanche	Nombre de bus
Actuel	8 M [3]	24 000	11 200	94 [3]
2050	9 M	27 000	12 600	100



MÉTHODOLOGIE

- 9 kgH₂/100 km de consommation en moyenne
- 10 kgH₂/100 km pour 3 lignes
- 25 kgH₂ par bus par jour
- Recharge à 3,6 kgH₂/min [4]

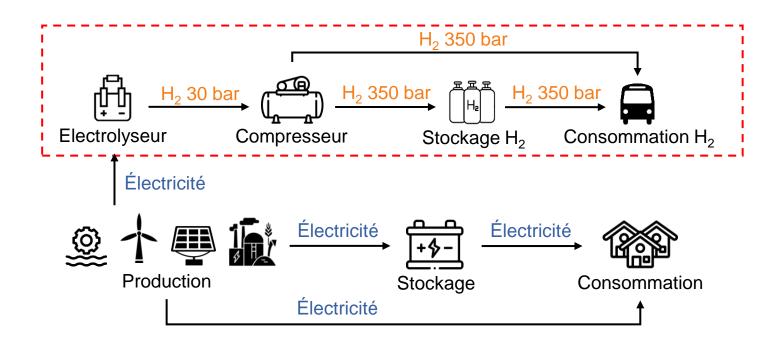


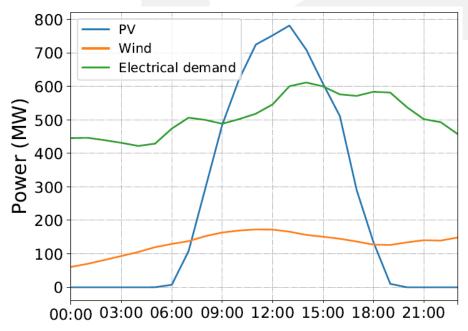
MÉTHODOLOGIE

- Scénario de production électrique optimal
- Distribution des potentiels aux postes sources de l'île [6]
- Localisation des stations en fonction des terminus des lignes

	Puissance (MW)	
PV	1 200	
Hydraulique	233	
Eolien	146	
Eolien offshore	40	
ETM	30	
Géothermie	15	
Biomasse	303	

[6, 7]



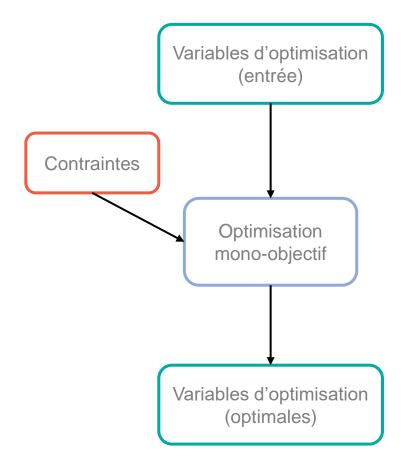


MODÉLISATION

- 25 postes sources
- 500 km de lignes HTB 63 kV (aériennes, souterraines, sousmarines)

OPTIMISATION

Variables d'optimisation :


- Puissance horaire des technologies de production électrique $(g_{n,s,t})$
- Taille des stockages et énergie stockée horaire $(\overline{h}_{n,s,t},\,h_{n,s,t})$
- Taille électrolyseurs compresseurs et puissance horaire $(\bar{g}_{n,s,t}, g_{n,s,t})$
- Investissements sur le réseau électrique (F_l)

Optimisation mono-objectif, minimisation des coûts d'investissement et d'exploitation :

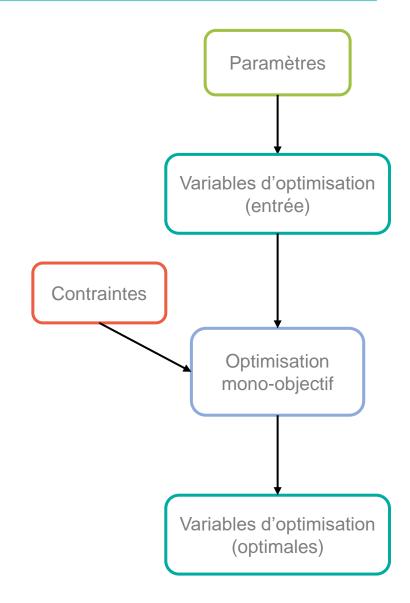
 $\sum_{n,s} c_{n,s} \bar{g}_{n,s} + \sum_{n,s} c_{n,s} \bar{h}_{n,s} + \sum_{l} c_{l} F_{l} + \sum_{t} \left[\sum_{n,s} o_{n,s,t} g_{n,s,t} + \sum_{n,s} o_{n,s,t} h_{n,s,t} \right]$

Contraintes:

- Satisfaction de la demande électrique et hydrogène
- Fonctionnement électrolyseurs compresseurs 80 % de l'année
- $\sum_{t} g_{n,s,t} \leq ProdMax$ pour les filières hydraulique et biomasse

OPTIMISATION

Optimisation mono-objectif, minimisation des coûts d'investissement et d'exploitation :

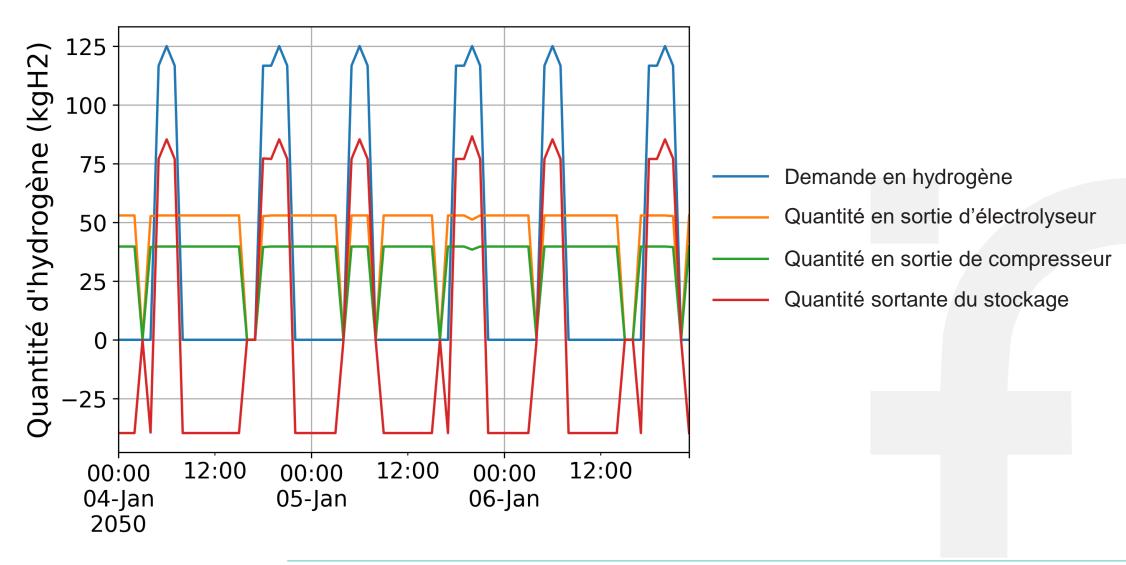

[8] $\sum_{n,s} c_{n,s} \bar{g}_{n,s} + \sum_{n,s} c_{n,s} \bar{h}_{n,s} + \sum_{l} c_{l} F_{l} + \sum_{t} \left[\sum_{n,s} o_{n,s,t} g_{n,s,t} + \sum_{n,s} o_{n,s,t} h_{n,s,t} \right]$

Contraintes:

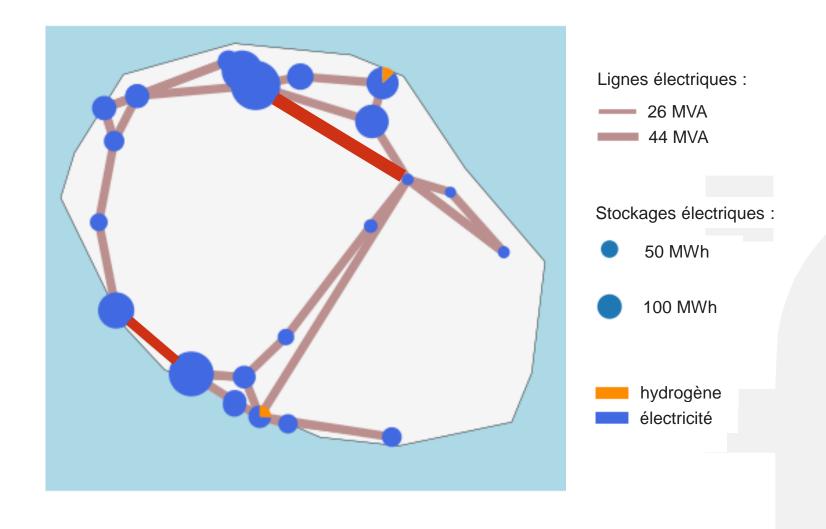
- Satisfaction de la demande électrique et hydrogène
- Fonctionnement électrolyseurs compresseurs 80 % de l'année
- $\sum_{t} g_{n,s,t} \leq ProdMax$ pour les filières hydraulique et biomasse

Paramètres:

- Puissances installées, demande électrique et hydrogène
- Données réseau (postes, lignes, etc.)
- Données techniques et économiques (dont $c_{n,s}, c_l, o_{n,s,t}$)
- Modèles de fonctionnement PV et éolien
- Données météorologiques



	Taille des électrolyseurs	Taille des compresseurs	Taille des stockages H ₂	Taille des batteries	Renforcement des lignes électriques
2 stations	3,78 MW	2,65 MW	15,88 MWh (total à 31,72 MWh, soit 952 kgH ₂)	1 980 MWh	+5 MVA et +2 MVA
3 stations	2,52 MW	1,76 MW	10,58 MWh (total à 31,74 MWh, soit 952 kgH ₂)	1 980 MWh	+4 MVA et +2 MVA
4 stations	1,89 MW	1,32 MW	9,52 MWh (total à 38,08 MWh, soit 1 143 kgH ₂)	1 980 MWh	+3 MVA et +2 MVA


- Taille des électrolyseurs, des compresseurs et des batteries pour toute l'île égale
- Stockages hydrogène + importants dans le cas de 4 stations
- Analyse de sensibilité : évolution de la consommation des bus proportionnelle à la taille des installations

- Utilisation des batteries : recharge le jour, décharge la nuit
- Taux horaire moyen de pénétration des énergies intermittentes : 38,5 %

- Coûts optimisés sur l'année proches pour 2 ou 3 stations (1 600 M€)
- Empreinte au sol des stations similaire
- Plus de restrictions réglementaires pour 2 stations (1 250 kgH₂ par jour)

CONCLUSION ET LIMITES

- Installation de stations hydrogène faisable techniquement dans le cas présenté
- Peu d'impact sur le réseau mais des besoins en stockages électriques importants

- Test avec un seul scénario de production optimal
- Une seule pompe modélisée par station
- Optimum économique qui ne tient pas compte des contraintes locales
- Bus avec un faible kilométrage

PERSPECTIVES

- Etude et optimisation de la courbe de recharge
- Travail similaire pour un train à hydrogène
- Optimisation avec stockages hydrogène à chaque poste source
- Prise en compte de critères environnementaux dans l'optimisation

MERCI DE VOTRE ATTENTION

agnes.francois@utbm.fr

