

3^{éme} reunion plénières de la Fédération Hydrogène (FRH2) 22-26/05/2023

Multiple phase transitions in $Y_{1-y}R_yFe_2$ hydrides and deuterides

V. Paul-Boncour¹, T. Mazet², V. Shtender^{1,3}, K. Provost¹, E. Alleno¹

^aUniversité Paris Est Créteil, CNRS, ICMPE, 2 Rue Henri Dunant F-94320 Thiais, France ^bUniversité de Lorraine, CNRS, IJL, F-54000 Nancy, France ³Department of Chemistry – Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden

Outline

- 1. Interest of *AB*₂ Laves phase compounds
- 2. YFe₂ structure and influence of H absorption
- 3. Methods
- 4. Results
 - Structures of YFe₂D_x compounds
 - Phase transitions
 - Thermodesorption
 - Order-disorder transitions
 - Magnetic transitions
 - Magnetism and magnetic entropy In Y_{1-x}R_xFe₂ compounds
- 5. Conclusions

Wood museum, Taiwan

1. Interest of AB₂ Laves phase compounds

> A large variety of AB_2 Laves phases: > 1000 compounds

➤A great number of applications:

F. Stein, A. Leineweber, Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties, J. Mater. Sci., 56 (2021) 5321-5427.

• *R*Fe₂: Giant magnetostriction for actuators, sonars ...

Hydrogen storage application :

V.A. Yartys, M.V. Lototskyy, Laves type intermetallic compounds as hydrogen storage materials: A review, J. Alloys Compds, 916 (2022) 165219.

H. Kohlmann, Hydrogen order in hydrides of Laves phases, Z. Krist-Cryst Mater., 235 (2020) 319-332.

2. YFe₂ structure and H sites

Cubic C15 structure

Fd-3*m* S.G. *a* = 7.36 Å

3 tetrahedral sites for H insertion

2. Hydride synthesis: Influence of *T* and *P*?

DSC: Peak temperature, T_{p} , of each reaction and the hydrogen pressure at two heating rates (10 and 20 K/min)

K. Aoki, H. W. Li, M. Dilixiati, and K. Ishikawa, Mater. Sci. Eng. A 449-451, 2 (2007).

XRD patterns of YFe_2 heated a rate of 0.17 K/s and at the H₂ pressure of 1.0 MPa.

2. Hydride synthesis: Influence of *T* and *P*?

DSC: Peak temperature, T_{p} , of each reaction and the hydrogen pressure at two heating rates (10 and 20 K/min)

K. Aoki, H. W. Li, M. Dilixiati, and K. Ishikawa, Mater. Sci. Eng. A 449-451, 2 (2007).

XRD patterns of YFe_2 heated a rate of 0.17 K/s and at the H₂ pressure of 1.0 MPa.

2. Questions ?

How much hydrogen can be inserted in YFe₂?

In which sites?

What is the influence on H insertion in YFe₂ on:

- Thermodynamic
- Structural

Magnetic

ullet

- Properties ?

ICMPE Institut de Chimie et des Matériaux Paris-Est

3. Synthesis methods

Alloy synthesis

Induction melting Y+Fe

+3 weeks annealing at 1100 K In silica tube under vacuum

Home made Sievert apparatus P < 10 MPa, 410 K

Hydride/deuteride synthesis

High pressure apparatus P < 1 GPa, 373 K

S.M. Filipek, Poland

P. Loubeyre, CEA-DAM

ICMPE Institut de Chimie et des Matériaux Paris-I

3. Characterization methods

4. Results

Several plateaus in PCT curves

Several hydrides with different structures separated by two phase ranges

V. Paul-Boncour, M. Latroche et al, J. alloys Componds 255, 195-202 (1997).

V. Paul-Boncour, FRH2, 2023

480-

400-

 α'_1 / α'_2

 α'_2 / α'_3

300 K

3

2

x (D/YFe₂)

Cub. 2a

Tetr.

 α / α'_1

C15

Rh.

4.1 Structural properties

SXRD + Neutrons : structure of single phase hydrides

Lowering of crystal symmetry

Maximum H content?

If all sites where filled 17 H/f.u. But H-H > 2 Å and Fe4 site is empty

The capacity depends on the applied pressure:

Up to 1 MPa: 4.2 H/f.u.

under 0.8 GPa: 5 H/f.u.Remain stable when releasing pressure

Under 35 GPa : 7-8 H/f.u.

V. Paul-Boncour, L. Guénée, et al, J. Solid State Chem. 142, 120-129 (1999).

4.1 Structural properties: distortion and surstructures (x < 3)

D in 1 A2B2 sites

a′= 7.785 Å

a′= *a**√5/2 = 11.985 Å

c= *a* = 7.622 Å

D in 9 A2B2 sites

a'= 2*a*= 15.336 Å

V. Paul-Boncour, FRH2, 2023

D in 21 A2B2 sites

a′= *a**√5/2 = 12.15 Å

c′= 3*a* = 23.079 Å

4.1 Structural properties: distortion and surstructures (x > 3)

YFe₂D_{3.5} Monoclinic (*P*1*c*1) D in 9 Y2Fe2 + 2 YFe3 sites

a = 15.754(2) Å, b = 5.633(1) Å $c = 9.476(1) \text{ Å}, \theta = 144.55^{\circ}$ G. Wiesinger, V. Paul-Boncour, et al. J. Phys.: Condens. Matter 17, 898 (2005).

YFe₂D_{4.2} Monoclinic (P1c1) D in 15 Y2Fe2 + 3 YFe3 sites

a = 5.50663(4) Å, *b* = 11.4823(1) Å *c* = 9.42919(6) Å, *θ* = 122.3314(5)°

J. Ropka, et al., J. Solid State Chem. 182, 1907 (2009).

YFe₂D₅ Orthorhombic (*Pmn*2₁) D in 6 Y2Fe2 + 2 YFe3 sites

a = 5.437 Å, b = 5.850 Å, c = 8.083 Å

V. Paul-Boncour, S. M. Filipek, et al. J. Phys.: Condens. Matter 15, 4349-4359 (2003).

4. Filling of H sites

Smallest distances between 2 96 g sites= 0.8 Å

Switendick criterium: Minimum H-H distances between H atoms > 2 Å => Several sites are not occupied

Size of the interstitial sites r > 0.4 Å

 \Rightarrow Fe4 site is too small to accept H atoms \Rightarrow only Y2Fe2 and YFe3 sites are occupied

4.2 Phase transitions

DSC

3 Different types of transition

Thermal Desorption

- Order-Disorder transition
- **3** Magnetic transitions

4.2.1 Thermal desorption

The number of peaks increases with D content: Each phase desorb at a different temperature

4.2.1 Thermal desorption YFe₂D_{4.2}

Themal desoption (TPD): Each peak corresponds to a phase desorption

T. Leblond, V. Paul-Boncour, F. Cuevas, O. Isnard, and J. F. Fernandez, Int. J. Hydr. Energ. **34, 2278-2287 (2009).**

4.2.2 Order-disorder transitions

YFe₂D_{1.3} : At 450 K Reversible tetragonal–cubic transition

V. Paul-Boncour, L. Guénée, et al, J. Solid State Chem. **142**, 120-129 (1999).

YFe₂D_{4.2}: 2 steps Transition from monoclinic to cubic via a rhombohedral structure

4.2.2 order-disorder transitions

Transitions from ordered to cubic disordered phases

 \succ T_{O-D} decreases versus D content

 $rac{}$ x = 4.2 : the transition occurs in 2 steps

> x = 5 : remains orthorhombic: No O-D transition

V. Paul-Boncour, L. Guénée, et al, J. Solid State Chem. 142, 120-129 (1999).

4.2.2 Order-disorder transitions

Partial distribution function = PDF (Local order)

0.8

0.6

Fraction

`0.2

T isnge RMC , Switencity

0.0

4.2.3 Magnetic transitions in YFe₂D_x compounds

Competition between cell volume increase and Fe-H bonding

4.2.3 Magnetic transitions in YFe₂D_x compounds

Magnetic and O-D transitions are not correlated

Larger decrease for TMag versus x

They cross at x=3.5

4.2.3 Isotope and magnetocaloric effect in YFe₂(H,D)_{4.2}

Giant isotope effect: First order ferro-Antiferro transition: $T_{\text{F-AF}}$ increases from 84 to 131 K $\Delta T = 47$ K or 50 % increase of $T_{\text{F-AF}}$ Magnetocaloric effect: Large effect comparable to Gd Δ S (0-5 T) = -11 and -7 J/K.kg Magnetic refrigeration: => Increases T_{F-AF} near room temperature

V. Paul-Boncour and T. Mazet, J. Appl. Phys. **105,** 013914 (2009)

4.2.3 Influence of *R* **for Y substitution in** $Y_{1-x}R_xFe_2D_x$ **compounds**

 $Y_{1-x}R_{x}Fe_{2}(H,D)_{4.2}$

To increase T_{F-AF}: change the volume by *R for Y* substitution

T hydride > *T* deuteride ($\Delta T = 40$ to 46 K)

4.2.3 Influence of *R* for Y substitution in $Y_{1-x}R_xFe_2D_x$ compounds

4.2.3 Magnetic properties of Y_{0.9}Gd_{0.1}Fe₂H_x

4.2.3 Magnetic entropy variations in Y_{0.9}Gd_{0.1}Fe₂(H,D)_x

 ΔS_M peaks due to magnetocaloric effect associated to magnetic transitions:

At 310K: ΔS_{M} (M1) < ΔS_{M} (C2) 2nd order/ 1st order At 150 K: ΔS_{M} (M2) due to F-AF transition At 325 K : Inverse MCE effect at 325 K due to the structural O-D transition

5. Conclusions

 $YFe_{2} + H_{2} =$

5. Conclusions: YFe₂H_x : a true Swiss knife!

Multi-states (cristalline, amorphous, nano)

Multi-plateaux isotherm Multi-phases (> 10) Multi-structures (> 7) Multi-transitions

Multi-peak desorption

Multi-Magnetic entropy variation

Multi magnetic structures

