Plénière FRH2 22/05-26/05 2023

Study of the negative electrode with ionic liquid electrolyte for a new proton battery concept

J. Zhang^a, N. Chabeen<mark>e, M. Turmine^b, E. Kurchavova^b, V. Vivier^b, F. Cuevas^a, M. Mateos^a, M. Latroche^{a, †,} Judith Monnier^a</mark>

a : Univ. Paris Est Créteil, CNRS, ICMPE, UMR7182, F-94320, Thiais, France

b : Sorbonne Université, CNRS, LRS, UMR7197, F-75005, Paris, France

Outline

3. Conclusions and prospects

Junxian ZHANG– Plénière FRH2 2023 – 22-26 may 2023 – St. Gilles

Advantages and limitations of Li-ion and Ni-MH batteries

Li-ion

- ✓ High energy density
- **High power** \checkmark
- Safety: flammable organic Х electrolyte
 - → WiS electrolytes

→ Na, Mg batteries

Ni-MH

✓ Security and Robustness Low-cost

- **Energy density: narrow electrochemical** Х window of water
- X Lifetime : electrode corrosion in KOH solution
- Protonic conducting battery in ionic liquid (IL) electrolyte:

Charge career: abundant, light-weight, enables a quick ionic conduction

Concept inspired from Ni-*M*H batteries but modifying the electrolyte and the negative and positive electrodes.

Ionic liquids

- Salts that are liquid below 100°C
- Their physical and chemical properties can be tailored by mixing them with other compounds ^[1]
- Nonflammable, non-volatile and recyclable
- ⇒ Safe electrolyte
- Two families: aprotic and protic (PIL)
- PIL = mobile proton with conductivity above 1 mS.cm^{-1 [2]}
- → Possible application as proton exchange electrolyte
- Wide electrochemical window

⇒ High cell potential enabling high energy density W = Q x U

voltage capacity

[1] : L. Segade et al., J. Molecular Liquids, 2016, 222, 663

[2] : M. Watanabe et al., Chemical Reviews, 2017, 117, 7190

Ionic liquids

 $\int_{H} \bigcup_{O} \bigcup_{H_2N^{+}} \bigcup_{Pyrrolidinium Formate [Pyrr][F]}$

1-ethyl-3-methylimidazolium acetate [EMIM][Ac]

Pyrrolidinium Acetate [Pyrr][Ac]

Acetic Acid

Pyrrolidine

Ionic liquids: synthesis

• FTIR of synthesized [Pyrr][Ac] in comparison with Ac.A and Pyrr

Conclusions and prospects

Ionic liquids: physico-chemical properties

Ionic liquids: electrochemical window

Junxian ZHANG– Plénière FRH2 2023 – 22-26 may 2023 – St. Gilles

Ionic liquids: summary

Medium	η at 25°C	Ε _η	σ at 25°C	Ε _σ	E _{window}
	(mPa.s)	(kJ. mol ⁻¹)	(mS. cm ⁻¹)	(kJ. mol ⁻¹)	(V)
[Pyrr][F]	12.5	21.92	36.63	4.42	2.0
[Pyrr][Ac]	34.1	30.21	9.20	11.58	2.2
[Pyrr][Ac] + Ac (2M)	28.0	28.24	8.04	10.85	2.3
[Pyrr][Ac] + pyr (2M)	21.1	27.34	8.96	9.03	2.4
[EMIM][Ac]+Ac(2M)	50.9	31.51	5.72	15.85	3.0

The medium with low viscosity provides high conductivity!

Electrochemical window wider than that of KOH aqueous solution

Junxian ZHANG- Plénière FRH2 2023 - 22-26 may 2023 - St. Gilles

Half cell test: working electrode

S.G. P6/mmm

Composite electrode formulation:

- 90 wt. % alloy (active material)
- 5 wt. % carbon black (conductor)
- 5 wt. % PTFE (binder)

Conclusions and prospects

Half cell test: galvanostatic cycling

3-electrode electrochemical cell:

- Working electrode: composite AB₅ pressed on a Ni-grid
- **Reference electrode:** Hg/HgO for KOH solution, Ag/AgNO₃for ILs
- Counter electrode: Platinum grid

Galvanostatic cycling regime:

- C/40 for ILs
- C/10 for KOH solution

Capacity vs cycle number:

- The highest capacity is obtained in KOH medium after activation cycles
- For IIs, capacity increases as [Pyrr][Ac]+Pyr < [Pyrr][Ac]+Ac.A < [Pyrr][Ac]</p>
- The lowest capacity is observed for [Emim][Ac]+ Ac.A, and it decreases rapidly
- [Pyrr][Ac] shows the best properties. It will be further investigated

Medium	1 st cycle capacity (mAh.g⁻¹)	Maximum capacity (mAh.g ⁻¹)	8 th cycle's capacity (mAh.g ⁻¹)	Capacity decrease
КОН	206	254	229	10 %
[Pyrr][Ac]	202	221	215	3%
[Pyrr][Ac] + Ac.A. (2M)	217	217	191	12 %
[Pyrr][Ac] + Pyrr (2M)	201	204	185	9 %
[EMIM][Ac] +Ac(2M)	189	189	117	38 %

Maximum capacity and capacity decrease:

- The highest capacity is obtained in KOH medium after activation cycles
- For IIs, capacity increases as [Pyrr][Ac]+Pyr < [Pyrr][Ac]+Ac.A < [Pyrr][Ac]</p>
- The lowest capacity is observed for [Emim][Ac]+ Ac.A, and it decreases rapidly
- [Pyrr][Ac] shows the best properties. It will be further investigated

*AB*₅ in [Pyrr][Ac] at different C-rates:

- Charge potential changes little
- Discharge potential strongly increases with C-rate
- Reversible capacity decreases with C-rate
- Kinetic limitation of charge transport?

XRD of electrode after charge: evidence of hydrogen transfer

- XRD of the charged electrode containing the AB₅H₆ hydride phase
- MH releases some hydrogen spontaneously
- MH amount decreases with measuring time and finally convert into the intermetallic M phase

Context

Conclusions and prospects

- [Pyrr][F] and [Pyrr][Ac] have been synthesized, their mixtures with acetic acid and pyrrolidine have been studied as electrolytes for proton exchange batteries.
- An AB_5 -type alloy has been cycled with ILs. A specific capacity of 216 mAh·g⁻¹ was obtained in [Pyrr][Ac]
- Obtained results are promising with a capacity close to that obtained in KOH medium
- The XRD of the charged electrode confirms that electrochemical cycling leads to the hydrogenation and dehydrogenation of the intermetallic compound.
- Further question may be raised for the electrolyte, the electrode/electrolyte interface.
- Positive side: to be explored

⇒ French National Research Agency ANR H-BAT project

Acknowledgements

Florence KANG and Liming CHEN, internship students from DUT and Master 2

Thank you for your kind attention!

junxian.zhang@cnrs.fr