

network on Hydrogen energy

FRH2 22-26/05/2023 Saint Gilles, La Réunion

agence nationale de la recherche

FRANCE

Structural and thermodynamic study of $LaY_{2.3}Ni_{11.5-x}Mn_x$ compounds with $0.3 \le x \le 1.8$

<u>Ghofrane FEDLOUK</u>, Judith MONNIER and Junxian ZHANG

East Paris Institute of Chemistry and Materials (ICMPE)

"New intermetallic intergrowth compounds for hydrogen storage under ambient conditions"

The idea is to develop new AB_n compounds (A=Y, Lanthanides and B=Ni, Mn, Al, Fe) with a high storage capacity, complete reversibility and good stability for applications under ambient conditions.

Substitutions will be made on both *A* and *B* elements in order to improve the reversibility and to have a unique plateau at a low pressure.

→ Objective: to develop new AB_n compounds with a storage capacity ≥ 2 wt.% under ambient conditions (T = 25°C-70°C and P ≤ 1 MPa) and a complete reversibility.

Elements A: stable hydrides at ambient T and P.

Elements B: unstable hydrides at ambient T and P.

AB_n compounds:

→Absorption and desorption at ambient T and P.

AB₂, ..., **AB**₃, **A**₂**B**₇, **A**₅**B**₁₉, ..., **AB**₅

 AB_2 and AB_5 compounds

C14: *P6*₃/*mmc*, hexagonal MgZn₂ structure type

C15: $Fd\overline{3}m$, fcc MgCu₂ structure type

These compounds have high hydrogen storage capacities but poor reversibility. Haucke phases

P6/mmm, hexagonal CaCu₅ structure type

These compounds have good hydrogen storage capacities (slightly lower than AB₂) and good reversibility.

The stacking structures of AB_n compounds (2<n<5)

$\mathbf{A}B_n = \mathbf{z} \left[\mathbf{A}_2 \mathbf{B}_4\right] + \mathbf{y} \left[\mathbf{A}B_5\right]$
z = 1, y = 1 for AB ₃
z =1, y = 2 for A ₂ B ₇

V^{*} (average volume) = V/m V: Cell volume m = number of stacking units

c* (average lattice parameter) = c/m
c : Lattice parameter
m = number of stacking units

AB_3 and A_2B_7

- A binary **AB**₃ compound (**Y**Ni₃^[1]) •
- 1st plateau at a low pressure.
- Good storage capacity. -
- 2 plateaus at different pressures
- Not reversible. _
- A binary A_2B_7 compound ($Y_2Ni_7^{[2]}$)
- 1st plateau at a higher pressure.
- Lower storage capacity.
- 3 plateaus at different pressures
- Good reversibility.

The goal ? → To have a compound with : -A high storage capacity. -A good reversibility. -A unique plateau

FRH2 22-26/05/2023 Saint Gilles, La Réunion

Syntheses method

6 *AB*_{3.48} compounds (*A* = La+Y; *B* = Ni+Mn) based on LaY_{2.3}Ni_{11.5-x}Mn_x (*x* = 0.3; 0.6; 0.9; 1.2; 1.5; 1.8)

 \rightarrow Re-melted 4 times

Sample sealed under argon

Annealing furnace

➔Annealed at 900°C for 3 days.

FRH2 22-26/05/2023 Saint Gilles, La Réunion

Structural characterization by XRD

Compilation of the Rietveld refinement results

0

Compilation of the Rietveld refinement results

Cell volume:

Compilation of the Rietveld refinement results

Lattice parameters of each phases:

Chemical characterization by Electron Probe Micro Analysis (EPMA)

The local compositions of these four compounds $(LaY_{2.3}Ni_{11.2}Mn_{0.3} LaY_{2.3}Ni_{10.9}Mn_{0.6} LaY_{2.3}Ni_{10.6}Mn_{0.9}$ et $LaY_{2.3}Ni_{10.3}Mn_{1.2}$) are positioned between the two phases AB_3 and A_2B_7 .

The stoichiometry of these compounds is $AB_{3.48}$ (close to $AB_{3.5}$ (A_2B_7)) which explains the presence of the point clusters around the A_2B_7 line.

 $LaY_{2.3}Ni_{10}Mn_{1.5}$ and $LaY_{2.3}Ni_{9.7}Mn_{1.8}$ are under way

Pressure Composition-Isotherm curves (PCI)

□ <u>Activation process</u>: at 150°C for 2 hours under secondary vacuum.

PCI measurement: at 25°C with a maximum applied pressure of 1 MPa.

The maximum recorded capacity at 25 °C and 1 MPa for :

- LaY_{2.3}Ni_{11.2}Mn_{0.3} is 1.63 wt%.
- LaY_{2.3}Ni_{10.9}Mn_{0.6} is 1.63 wt%.
- LaY_{2.3}Ni_{10.6}Mn_{0.9} is 1.71 wt%.

The studied compounds present unique sloping plateaus.

→By playing on the chemical substitution with La and Mn, the multiple plateaus behavior is deleted.

 $LaY_{2.3}Ni_{10.3}Mn_{\textbf{1.2,}}LaY_{2.3}Ni_{10}Mn_{\textbf{1.5}} \text{ and } LaY_{2.3}Ni_{9.7}Mn_{\textbf{1.8}} \text{ are under way}$

Pressure Composition-Isotherm curves (PCI)

1 elemental brick of **AB**₃

Atom	Environment	C14	C15
			Site
Н	T-A2B2	12k	96g
н	T-AB3	4f	32e
Н	T-B4	4e	8b

Atom	Environment	Site
Н	T-B4	4h
Н	O-A2B2	6 <i>m</i>
Н	T-AB3	12 <i>n</i>
Н	T-AB3	120

Atom	Environment	Site
Н	T-A2B2	18h1
Н	T-A2B2	18h ₂

□ Increasing the Mn content in these compounds lowers the plateau pressure and flattens it.

→<u>Hypothesis</u>: Expanding the phases' volume as seen in the XRD results increases the size of available interstitial sites (previously needing a higher H_2 pressure to be occupied).

Pressure Composition-Isotherm curves (PCI)

compound preserves its structure \rightarrow completely reversible.

- □ We synthesized 6 multi-phased compounds $LaY_{2.3}Ni_{11.5-x}Mn_x$ with different Mn contents ($0.3 \le x \le 1.8$) containing the phases AB_3 and A_2B_7 with different percentages.
- \checkmark Mn substitution leads to a unique plateau pressure.

The effects of increasing the Mn content:

- ✓ Mn favors the formation of AB_3 phase.
- ✓ Mn can occupy "A" and "B" sites. (Which ones exactly?)
- ✓ Mn lowers the plateau pressure. (How?)

Good storage capacities: up to 1.7 wt% at 1 MPa and 25°C and complete reversibility.

Outlooks

- 1. Neutron diffraction measurements will be conducted to identify the exact positions of Mn in our structures.
- 2. Continue studying the thermodynamic properties + cycling.

This work was funded by the French National Research Agency (ANR), reference project "ANR-22-PEHY-0007", as part of the France 2030 program.

