

Project FLEXISOC

High throughput approach to optimize Ni-based catalyst for dry reforming of methane: impact of Nickel-support interaction

Yuanshuang ZHENG, Theresa AL-BAYEH, Marcia ARAQUE-MARIN*

Wednesday, in Saint-Gilles, 24th May 2023

I. Introduction

1.1. Biogas as a flexible energy source for SOFC

Biogas: Future plan & Situation in France^[2]: (Biomethane as Main component of Biogas)

- Production above government forecasts
- With more and more competitive price

Biogas production grows and prices fall :

- The Multiannual **Energy** Program defines objectives that the sector will exceed from 2023. Projections for the sector aim to reach **12 TWh in 2023** and **30 TWh in 2030**.
- The production **price** should **fall by 40% by 2028** due to the industrialization of the sector and processes.

Evolution of the purchase price – biogaz

I. Introduction

1.2. High throughput technology

I. Introduction

1.3. Dry reforming of methane by supported Ni-catalyst

Dry reforming of methane $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$

- Hydrogen production
- Strong endothermic reaction (energy storage)
- Conversion of two greenhouse gases

Challenges for long-life SOFC anode materials: Ni-catalysts

- Avoid coke deposit
- Avoid sulfur poisoning

 $CH_{4}Conversion (\%) = \frac{CH_{4,in} - CH_{4,out}}{CH_{4,in}} \times 100\%$ $CO_{2}Conversion (\%) = \frac{CO_{2,in} - CO_{2,out}}{CO_{2,in}} \times 100\%$ $Yield of H_{2}(\%) = \frac{H_{2,out}}{2CH_{4,in}} \times 100\%$

II. Pathway to catalyst synthesis

2.1. Sol-gel route & impregnation method

1. Sol-gel (citric acid routes)

The sol-gel method can promote **strong interaction** between the **active nickel species** and the **support**, the modification of catalyst can change the surface defects and increase the oxygen vacancies. The impregnation method can anchor the nickel species on the catalyst surface but weakening interaction with the support could lead to particle accumulation and loss of active nickel species.

1 – P. B. Managutti et al., ACS Appl. Mater. Interfaces 2021, 13, 35719–35728. 2 – P. B. Managutti et al., ACS Appl. Mater. Interfaces 2023. xx, xxxxx-xxxxx.

II. Pathway to catalyst synthesis

2.2. Coprecipitation & mechanochemical approach

3. Coprecipitation

The conventional coprecipitation method is suitable for preparation of Ni doped catalyst from cerium zirconium **solid solution**, and take advantage of the **high oxygen mobility** and relative **high temperature stability** of cerium zirconium support. 4. Ballmill

Mechanochemical approach

The Ballmill mechanochemical method provides a more **uniform synthesis** method of different mixed oxides and better **control of the distribution of catalyst particles** and catalytic oxides [1].

Condition:

- ~ 1.7 g powder (1.5 g support + 0.186 g NiO).
- <u>~ 20 g ball (zirconia ø = 5 mm).</u>
- ~ 2 g ethanol as solution.
- ~ 2 hours grinding

Figure – HOKKAIDO UNIVERSITY Mechanochemical: VD: Dr. Victor Duffort; Coprecipitation: LD: Dr. Louise Duhamel.

III. High throughput approach of catalysts

3.1. Catalysts for high throughput screening

Reacto	r Catalyst	Synthesis	Pretreatment Temperature	Characterizations	Reaction
No.					
1	CeNi _{0.1}	Coprecipitation	750 °C	XRF	Obtained
2	La _{0.5} Sr _{1.5} Mn _{0.8} Ni _{0.2} O ₄	Sol-gel	750 °C	XRF	Obtained
<u>3</u>	Pr _{0.5} Sr _{1.5} Mn _{0.8} Ni _{0.2} O ₄	Sol-gel	750 °C	XRF/H ₂ -TPR	Obtained
<u>4</u>	La _{0.5} Sr _{1.5} Mn _{0.7} Ni _{0.3} O ₄	Sol-gel	750 °C	XRF/H ₂ -TPR	Obtained
5	$Pr_{1.5}Sr_{1.5}Mn_{1.5}Ni_{0.4}Fe_{0.1}O_7$	Sol-gel	750 °C	XRF	Obtained
6	$Pr_{0.5}Sr_{1.5}Mn_{1.5}Ni_{0.25}Fe_{0.25}O_{7}$	Sol-gel	750 °C	XRF	Obtained
7	SiC	SiC -		-	Obtained
8	YSZ	Commercial	750 °C	XRF	Obtained
9	elcogen half-cell YSZ_Ni	Commercial	450 °C	XRF	Obtained
10	cellules GDC/NiO FENTO	Commercial	450 °C	XRF	Obtained
11	8YSZ_NiO, 10%Ni	Ballmill	450 °C	XRF/H ₂ -TPR	Obtained
<u>12</u>	HSA GDC+NiO, 10% Ni	Ballmill	450 °C	XRF/H ₂ -TPR	Obtained
<u>13</u>	Ni-CZS	Pseudo Sol-gel	450 °C	XRF/H ₂ -TPR	Obtained
14	LSA GDC+NiO, 10%Ni	Ballmill	450 °C	XRF/H ₂ -TPR	Obtained
15	Ni/YZ	Impregnation	450 °C	XRF/H ₂ -TPR	Obtained
<u>16</u>	CeZr _{0.5} Ni _{0.5}	Coprecipitation	450 °C	XRF/H ₂ -TPR	Obtained
		2 / 12 12 and 16 big	h & medium conversion of (

and 16: high & medium conversion of CH_A

III. High throughput approach of catalysts

Blocks & Reactors composition

3.2. Conditions of high throughput screening

Pretreatment in H ₂	Block I & II	Block III & IV
Temperature	750 °C	450 °C
Duration	24h	12h
Block	I and II	III and IV

Catalytic test	Test 1	Test 2		
Temperature	700 °C	750 °C		
Duration	10h 10h			
Catalyst mass	20 mg			
CH ₄ & CO ₂	6.67 ml/min (0.4 L/h) per gas per reactor			
Не	3.33 ml/min (0.2 L/h) per gas per reactor			
GC test	4 points/catalyst, ~10 min/analysis			
GHSV	35 000h ⁻¹			

III. High throughput approach of catalysts

3.3. Results of CH₄ & CO₂ conversion of high throughput screening

Description:

Catalytic conversions rate (high & medium) of $CH_4 \& CO_2$ of 5 typical pre-reduced catalysts

Discussion:

Global catalytic activity at **700** °C and **750** °C of CH₄ and CO₂ conversions illustrate different trends due to diverse synthesis methods, physicochemical properties and elemental composition.

Conclusion:

The modified perovskite (Site-A & Site-B elemental substitution) and cerium zirconium solid solution (Gd & Sm incorporation) show relatively better conversion rate.

Need to do:

Elemental analysis in first & H₂-TPR to study reduction properties.

4.1. Nickel based catalysts – XRF elemental analysis

Analyser: M4 Tornado – Bruker

 How ? – 1.X-ray spectrometer. 2.Sample support. 3.fluorescence X detection.
Why ? – an energy dispersive micro X-ray spectrometer that can be used for mass elemental analysis of metal materials: Advantages: Efficient and nondestructive

- 1. Generally, the **Ni elemental proportion** in metals calculated by theory is **close** to XRF analysis results.
- Considering the HT reaction results, the XRF results of divers catalyst has positive significance for optimizing catalyst composition (<u>Goal of this study</u>) for <u>reducing Ni content and selection of supports</u>, preventing sintering and avoiding carbon deposition.

Catalysts	Theoretical Ni (metal mass %)	XRF Ni (metal mass %)
Ni/YZ	10%	9.4%
Ni-CZS	10%	11.5%
8YSZ_Ni 10%Ni	10%	9.3%
HSA GDC+NiO 10%Ni	12.4% NiO	12.3% NiO
LSA GDC+NiO 10%Ni	12.4% NiO	12.4% NiO
Pr _{0.5} Sr _{1.5} Mn _{0.8} Ni _{0.2} O ₄	4.6%	4.3%
La _{0.5} Sr _{1.5} Mn _{0.7} Ni _{0.3} O ₄	6.8%	6.3%
CeZr _{0.5} Ni _{0.5}	13.6%	15.1%
YSZ	Commercial	0
CeNi _{0.1}	4%	2.7%
Ni/CY	10%	11.4%
Ni/CGO	10%	14.3%
elcogen half-cell YSZ_Ni	Commercial	37.1%
cellules GDC/NiO FENTO	Commercial	58%
La _{0.5} Sr _{1.5} Mn _{0.8} Ni _{0.2} O ₄	4.6%	4.1%
Pr _{1.5} Sr _{1.5} Mn _{1.5} Ni _{0.4} Fe _{0.1} O ₇	5.2%	4.6%
Pr _{1.5} Sr _{1.5} Mn _{1.5} Ni _{0.25} Fe _{0.25} O ₇	3.2%	3.1%
Pr _{0.5} Sr _{1.5} Mn _{0.9} Ni _{0.1} O ₄	2.3%	2.1%

Elcogen: Commercial supplier. Cellules: Commercial ceramic cellules. 8YSZ: 8 mol% Y₂O₃ stabilized ZrO₂. LSA: 12 m²/g. HSA: 23 m²/g.

4.1. Nickel incorporated perovskites – XRF elemental analysis vs. reactivity

 $\frac{Ruddlesden-Popper perovskites :}{A_{n+1}B_nO_{(3n+1)\pm\delta}}$

(2) La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O₄ showed best activity and stability generally.
When 750 °C increasing conversion in first but decreasing. Ni inverse exsolution [1,2]

(1) Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O₄ & (3) La_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O₄ showed activity when 700 °C, but nearly no conversion when 750 °C.

(1) $Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O_4$ vs. (3) $La_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O_4$ Pr substitution: positive impact for Formula $A_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O_4$

(2) La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O₄ vs. (3) La_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O₄ More Ni doping: positive impact for Formula La_{0.5}Sr_{1.5}Mn_xNi_{1-x}O₄

(4) $Pr_{1.5}Sr_{1.5}Mn_{1.5}Ni_{0.4}Fe_{0.1}O_7 vs.$ (5) $Pr_{1.5}Sr_{1.5}Mn_{1.5}Ni_{0.25}Fe_{0.25}O_7$ More Ni doping is better to Formula $Pr_{1.5}Sr_{1.5}Mn_{1.5}Ni_xFe_{1-x}O_7$ Fe doping goal : for coke oxydation.

1 – P. B. Managutti et al., ACS Appl. Mater. Interfaces 2021, 13, 35719–35728.

4.1. Nickel incorporated Cerium solid oxide – XRF elemental analysis vs. reactivity

Catalysts based on cerium oxide

On the whole :

Ni-incorporation into cerium oxide : positive impact for cerium based solid oxide.

Global profiles :

Increasing temperature from 700 °C to 750 °C : negative impact for cerium based solid oxide.

CeZr_{0.5}Ni_{0.5} vs. CeNi_{0.1} : Zr doping in cerium oxide : positive impact for dry reforming of methane reactivity.

CeZr_{0.5}**Ni**_{0.5} **vs. Ni-CZS : Sm doping** in cerium zirconium oxide : **positive** impact for dry reforming of methane reactivity.

4.1. Nickel based catalysts – XRF elemental analysis vs. reactivity

. Sic vs. (3) YSZ support : no activity.

- (4) Commercial one (elcogen half-cell YSZ_Ni) with high Nickel doping 37% percentage : nearly no conversion at 700 °C & such low conversion at 750 °C.
- (1) Ni/YZ & (2) 8YSZ_Ni 10%Ni : <u>increasing conversion</u> from 700 °C to 750 °C.
- I. (1) Ni/YZ & (2) 8YSZ_Ni 10%Ni : similar activity during HT tests because of <u>Ni species on</u> SF <u>surface of YSZ</u>

Elcogen: Commercial supplier. Cellules: Commercial ceramic cellules. 8YSZ: 8 mol% Y₂O₃ stabilized ZrO₂. <u>1</u>-

18

4.1. Nickel based catalysts – XRF elemental analysis vs. reactivity

(3) Commercial one (cellules GDC/NiO FENTO) with high Ni doping 58% percentage : nearly no conversion at 700 °C & such low conversion at 750 °C.

(1, 2) HSA/LSA GDC+NiO 10%Ni : increasing conversion from 700 °C to 750 °C ; increasing activity at 750 °C. (But what we want is low temperature reaction goal)

 Conversion of (1) HSA GDC+NiO 10%Ni > (2) LSA GDC+NiO 10%Ni : High specific surface area showed positive impact.

Cellules: Commercial ceramic cellules.

1 – Y-M Park et al., Inter. Jour. of Hydrogen Energy, Vol 36, 15, 2011, 9169-9179.

LSA: low specific surface area 12 m²/g. HSA: high specific surface area 23 m²/g.

4.2. Nickel based catalysts reducibility by H₂ Thermal Programmed Reduction

H₂-TPR Protocol

Step	Step Temperature			
Degassing	200 °C	1 hour		
Reduction	Amb. – 1000 °C	10 °C/min		

What is H₂-TPR:

an thermal-analytical technique that examines the **reduction properties of metal oxides** in hydrogen under varying thermal conditions, an **important factor** in catalysis studies.

How is H_2 -TPR: ~ 50 mg catalyst inside U type quartz tube on AutoChem 2920 in 5% H_2 /He flow

Why is H₂-TPR:

to clarify the different interaction capacity between nickel species and divers support through study of reduction peak temperature.

4.2. Nickel based catalysts reducibility by H₂ Thermal Programmed Reduction

P1, P2, P3, P4: Catalysts from 4 different laboratories.

Catalyst	Total H ₂ amount (mmol/g)	H ₂ amount (mmol/g) (< 600 °C)	H/Metal Molar Ratio
Ni/YZ	1.4	1.4	1.65
Ni-CZS	2.0	1.6	0.77
8YSZ_Ni 10%Ni	1.7	1.7	2.04
HSA GDC+NiO 10% Ni	2.1	1.7	0.67
LSA GDC+NiO 10% Ni	1.9	1.6	0.59
Pr _{0.5} Sr _{1.5} Mn _{0.8} Ni _{0.2} O ₄	1.1	1.0	0.74
La _{0.5} Sr _{1.5} Mn _{0.7} Ni _{0.3} O ₄	1.3	1.0	0.86
CeZr _{0.5} Ni _{0.5}	2.5	2.2	0.83

General H₂-TPR profiles: [1, 2, 3, 4]

- 1. Ni species main reduction < 600 °C (also Project Goal).
- 2. H/Metal molar ratio: Hydrogen consumption per unit molar metals.
- a) When only Ni: H/Ni = 2, $Ni^{2+} + H = Ni^0 + 2H^+$;
- b) When only Ce: H/Ce = 1, $Ce^{4+} + H = Ce^{3+} + H^+$ (Superficial & Bulk);
- c) When only Mn: H/Mn = 1, $Mn^{4+} + H = Mn^{3+} + H^+$ (Superficial) & H/Mn = 1, $Mn^{3+} + H = Mn^{2+} + H^+$ (Interficial & Bulk);

YZ/YSZ: Yttria-stabilized zirconia;

Attention: Synergic impact of Cerium and Manganese species incorporation which also participate in reduction.

1 – Y. Wei et al., applied catalysis a: general 2020, 549, 117439.

2 – Ma, Y et al., Catal Lett 150, 1418–1426 (2020).

3 - Horlyck, J et al. Top Catal 61, 1842-1855 (2018).

GDC: Gadolinium Cerium; VD: Victor Duffort; 4 – S. Das et al., Chem. Commun., 2019, 55, 6074. CZS: Cerium Zirconium Samarium. LD: Louise Duhamel.

4.2. Nickel based catalysts reducibility – Reaction pretreatment (450 °C & 12 h)

Catalysts based on YSZ support

Catalyst	Synthesis / Ni position	Total H ₂ amount (mmol/g)	H ₂ amount (mmol/g) (< 600 °C)	H/Metal Molar Ratio
Ni/ <u>YZ</u>	Impregnation/ Support surface	1.4	1.4	1.7
8 <u>YSZ_Ni</u> 10%Ni	Mechanochemical / Support surface	1.7	1.7	2.0

Metal reduction: $Ni^{2+} + H = Ni^{0} + 2H^{+}$:

Theoretical molar ratio H/Ni = 2

YZ/YSZ support : Chemically stable (20-1000 °C)

- 1. Ni species main reduction < 600 °C (also **Project Goal**).
 - . H/Metal molar ratio : Ni/YZ (1.7) < 8YSZ_Ni (2.0).
 - . Reaction pretreatment (450 °C & 12 h) :
 - a. Ni/YZ : Slightly incomplete reduction (1.7).
 - b. 8YSZ_Ni (10% Ni) : Complete reduction (2.0).

Because of different synthesis methods [4] :

- . Impregnation : Ni species in porous structure of YZ.
- . Mechanochemical : Ni particles mainly on YSZ surface.
- 3. 450 °C is incomplete reduction for Ni/YZ.

1 – Y. Wei et al., applied catalysis a: general 2020, 549, 117439.

2 – Ma, Y et al., Catal Lett 150, 1418–1426 (2020).

3 – Horlyck, J et al. Top Catal 61, 1842–1855 (2018). 4 –

4 – S. Das et al., Chem. Commun., 2019, 55, 6074.

4.2. Nickel based catalysts reducibility – Reaction pretreatment (450 °C & 12 h)

Catalysts based on Gd doped cerium oxide

GDC: Gadolinium Cerium. HSA: high specific surface area 23 m ² /g.				
Catalyst	lyst Synthesis / Ni position		H ₂ amount (mmol/g) (< 600 °C)	H/Metal Molar Ratio
HSA <u>GDC</u> +NiO 10% Ni	Mechanochemical / Support surface	2.1	1.7	0.67
LSA <u>GDC</u>+ NiO 10% Ni	Mechanochemical / Support surface	1.9	1.6	0.59

LSA: low specific surface area 12 m²/g.

1 – Y. Wei et al., applied catalysis a: general 2020, 549, 117439. 2 – Ma, Y et al., Catal Lett 150, 1418–1426 (2020).

3 – Horlyck, J et al. Top Catal 61, 1842–1855 (2018).

Metal reduction -1: Ni²⁺ + H = Ni⁰ + 2H⁺: Theoretical molar ratio H/Ni = 2; Metal reduction -2: Ce⁴⁺ + H = Ce³⁺ + H⁺ (Superficial & Bulk): Theoretical molar ratio H/Ce = 1. Gd incorporation in CeO₂: 635 & 900 °C [5].

- 1. HSA/LSA GDC+NiO at lower temperature than GDC support : interaction by Ni doping in GDC.
- 2. Reaction pretreatment (450 °C & 12 h) : Nearly complete reduction of Ni species.
- HSA GDC+NiO presented the slightly better reducibility than LSA GDC+NiO from H/Metal molar ratio (0.67 > 0.59) due to more contact surface.

5 – I. V. Yentekakis et al., App. Catal. B: Environ. 192, 5 9 2016, 357-364.

4.2. Nickel based catalysts reducibility – Reaction pretreatment (450 °C & 12 h)

Catalysts based on cerium zirconium oxide

Catalyst	Synthesis / Ni position	Total H ₂ amount (mmol/g)	H ₂ amount (mmol/g) (< 600 °C)	H/Metal Molar Ratio	
(10%Ni) Ni- <u>CZ</u> S	Ni- <u>CZ</u> S Pseudo sol-gel / doping in support		1.6	0.77	
(10%Ni) <u>CeZr_{0.5}Ni_{0.5}</u>	Coprecipitation / doping in support	2.5	2.2	0.83	

1 – Y. Wei et al., applied catalysis a: general 2020, 549, 117439.

- 2 Ma, Y et al., Catal Lett 150, 1418–1426 (2020).
- 3 Horlyck, J et al. Top Catal 61, 1842–1855 (2018).

References: (1) Ni/CeO₂ & (2) CeO₂ reduction profile.

 $\begin{array}{l} \mbox{Metal reduction}-1: Ni^{2+} + H = Ni^0 + 2H^+: \\ \mbox{Theoretical molar ratio H/Ni = 2;} \\ \mbox{Metal reduction}-2: Ce^{4+} + H = Ce^{3+} + H^+ (\mbox{Superficial \& Bulk}): \\ \mbox{Theoretical molar ratio H/Ce = 1.} \end{array}$

Cerium Zirconium solid solution: **oxygen mobility** (Cerium), stability (Zirconium) and surface & structure defect (Samarium).

- <u>Ref (1,2) vs. samples</u>: Nickel doping into structure presented stronger interaction between nickel species and support, Ni²⁺ reduction appeared at higher temperature.
- 2. <u>Ref (2) vs. samples</u>: Ni and Sm doping improved Ce⁴⁺ species reduction to Ce³⁺ species.
- 3. CeZr_{0.5}Ni_{0.5} and Ni-CZS hold similar H/Metal ratio : coprecipitation similar interaction vs. Sol-gel.

4 – S. Das et al., Chem. Commun., 2019, 55, 6074.

CZS: Cerium Zirconium Samarium. 5 – I. V. Yentekakis et al., App. Catal. B: Environ. 192, 5 9 2016, 357-364.

3 – J. Wu et al., Applied Catalysis A: General, Vol 619, 2021, 118-137.

4 – Y. Zheng et al., Applied Catalysis A: General, Vol 614, 2022, 118-687.

25

4.2. Nickel based catalysts reducibility – Reaction pretreatment (750 °C & 24 h)

<u>Ruddlesden-Popper perovskites : $A_{n+1}B_nO_{(3n+1)\pm\delta}$ </u>

1 – P. B. Managutti et al., ACS Appl. Mater. Interfaces 2021, 13, 35719–35728. 2 – P. B. Managutti et al., ACS Appl. Mater. Interfaces 2023.

V. Conclusion & perspectives

Conclusion – HT approach to optimize Ni-catalyst for dry reforming of methane

- Comparing parallel HT reactions, La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O₄ and Ni-CZS showed the best conversion rates; Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O₄, HSA GDC+NiO and CeZr_{0.5}Ni_{0.5} exhibited relatively moderate conversion rates from catalytic results on activity & stability.
- 2. Among 4 synthesis methods: **Sol-gel, impregnation, coprecipitation and mechanochemical approach, Sol-gel method** showed **best** results due to **strong interaction** between nickel species and support.
- 3. YSZ presented chemically stability as support for Ni species.
- 4. Gd & Sm incorporation into Ce Zr solid oxide showed positive impacts on the reactivity and reducibility.
- 5. Perovskite (La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O₄ & Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O₄) presented significant reactivity and reducibility with low Ni doping content due to Ni exsolution after reduction in hydrogen and Mn species synergic influence on C-H bond breaking.
- 6. H₂-TPR : as evidence to confirm the conditions of the catalysts pretreatment (450 °C & 750 °C).
- 7. Hydrogen consumption & molar ratio H/M of H₂-TPR reflected corresponding activity of catalysts.
- 8. Interaction strength between the nickel species and the supports: By group: Ni-CZS > Ni/YZ; $La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O_4 > Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O_4$; HSA GDC+NiO > LSA GDC+NiO. (Sol-gel & more SSA : positive)
- XRF analysis showed catalysts' metal contents in mass, the theoretical and experimental results are generally similar in mass nickel.

V. Conclusion & perspectives

Perspectives – HT approach to optimize Ni-catalyst for dry reforming of methane

Perspectives	Perspectives Ideas	
	Co & Fe doping in perovskite	Avoid coke deposit
Elemental optimization	Zr & Sm in Cerium oxide	More surface defect & active Ni metal species
Synthesis Sol-gel	Sol-gel with more SSA	Ni stable & active species, with low content & small nanoparticles (6-9 nm) [1]
	XRD	Structure change during reduction or reaction
	XPS	Metal valences before vs. after reaction
Characterizations	TPO	Coke deposit
	SEM/TEM	Coke deposit, particles size, exsolution
	O ₂ -TPD	Oxygen mobility

Thanks for your kind attention

(UCCS)

(Cooperative Partners)

Thanks to Dr. Marcia ARAQUE-MARIN

Thanks to Dr. Victor DUFFORT

Thanks to Dr. Svetlana HEYTE

Thanks to Mme. Theresa AL-BAYEH (Intern)

Thanks to Dr. Mona BAHOUT

Thanks to Dr. Annie LE GAL LA SALLE

Thanks to Dr. Anne-Cécile ROGER

Thanks to Mr. Yilin LUO (Intern)

Thanks to the meeting organizers , the fundings and all the colleagues.

4.2. Nickel based catalysts reducibility – Reaction pretreatment (450 °C & 12 h)

- 1. Cerium Zirconium mixed oxide significant **oxygen mobility (Cerium)** and **stability (Zirconium)** which promoted Ni species catalytic activity.
- Nickel doping into Cerium Zirconium mixed oxide presented stronger interaction between nickel species and support, Ni²⁺ reduction appeared at higher temperature.
- Bulk Ce⁴⁺ & Ce²⁺ reduction appeared ~ 500 °C and > 800 °C. Nickel doping improved Ce²⁺ species reduction < 800 °C.

Catalyst	Total H ₂ amount (mmol/g)	H ₂ amount (mmol/g) (< 450 °C)	Ratio H ₂ /Ni
CeZr _{0.5} Ni _{0.5}	2.5	1.9	0.4

Ratio H₂/Ni: Ni & Ce oxide solid solution synergically participate in reduction with stronger interaction

^{4 –} O. H. Laguna et al., catalysis Today, 172, 2011, 118-123. 5 – He, J., et al., Environ Sci Pollut Res 28, 26018–26029 (2021).

^{1 –} Y. Wei et al., applied catalysis a: general., 2020, 549, 117439.

^{2 –} Ma, Y et al., Catal Lett 150, 1418–1426 (2020).

^{3 –} Horlyck, J et al. Top Catal 61, 1842–1855 (2018).

³⁰

4.2. Nickel based catalysts reducibility – Reaction pretreatment (450 °C & 12 h)

- Impregnation Ni species on surface: reduction happened in low < 600 °C temperature zone.
- Pseudo sol-gel Ni species on surface and in bulk: reduction also appeared at high > 600 °C temperature zone Ce reduction.
- Bulk Ce²⁺ reduction > 800 °C. But Ni & Sm doping improved Ce species reduction < 800 °C. Because of surface defect & oxygen vacancies by Sm incorporation.

Ni/YZ (10% Ni) 431 Impregnation H₂ Consumption Ni-CZS (10% Ni) Interfacial Pseudo sol-ge Ni²⁺ species Bulk Ce⁴⁺ species **Superficial** reduction Ni²⁺ species 100 200 300 400 500 600 700 800 900 1000 Temperature (°C)

^{1 –} Y. Wei et al., applied catalysis a: general 2020, 549, 117439.

^{2 –} Ma, Y et al., Catal Lett 150, 1418–1426 (2020).

^{3 –} Horlyck, J et al. Top Catal 61, 1842–1855 (2018).

^{4 –} O. H. Laguna et al., catalysis Today, 172, 2011, 118-123. 5 – He, J., et al., Environ Sci Pollut Res 28, 26018–26029 (2021).

4.2. Nickel based catalysts reducibility – Reaction pretreatment (450 °C & 12 h)

LSA: 12 m²/g. HSA: 23 m²/g.

	Catalyst	Total H₂ amount (mmol/g)	H ₂ amount (mmol/g) (< 450 °C)	Ratio H ₂ /Ni	Aggregatio species on 8	n of Ni 3YSZ_N	ⁱ Ra	Ratio H ₂ /Ni: GDC Support (Ce s		
	8YSZ_Ni 10%Ni	1.7	1.6	1.0	Uniforme Ni	specie	S S	synergically with a	y participate in reduction	
	HSA GDC+NiO 10% Ni	2.1	1.5	0.3	distribution on			with stronger interaction		
	LSA GDC+NiO 10% Ni	1.9	1.4	0.3	HSA/LSA GI	DC+NiC				
1. 2. 3.	HSA/LSA GDC+N and higher H ₂ cor surface defect b Reduction at high corresponded to I Gadolinium Ceriu mechanochemica (High specific sur slightly better re GDC+NiO (Low s	Less hydrogen more hydrogen NiO at lower hsumption: y Gd dopi h temperate bulk Ce ²⁺ r im mixed o al route: HS face area) educibility specific sur	rogen consu er unit of Ni, rogen consu in total. er temperat because of ng in Ce o ture reduction. oxide suppo SA GDC+N presented than LSA face area).	umption umption ure uo of vide . wide. ort by H [*] iO the					(8%)YSZ_Ni (10% Ni) HSA GDC+NiO (12.4% NiO) LSA GDC+NiO (12.4% NiO) bulk Ce ²⁺ reduction	
					100 200	300	400	500 60	0 700 800 900 1000 °⊂)	
- v	Wei et al applied catalysis a:	general 2020	549 117439				Ten	iperature (0)	

^{1 –} Y. Wei et al., applied catalysis a: g

^{2 –} Ma, Y et al., Catal Lett 150, 1418–1426 (2020).

^{3 –} Horlyck, J et al. Top Catal 61, 1842–1855 (2018).

V. Conclusion & perspectives

HT approach to optimize Ni-based catalyst for dry reforming of methane Conclusion

- Comparing parallel conversions, La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O₄ and Ni-CZS showed the best conversion rates (CO₂: ~45%, CH₄: ~30% at 700 °C; CO₂: ~ 20%, CH₄: ~5% at 750 °C); Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O₄, HSA GDC+NiO and CeZr_{0.5}Ni_{0.5} exhibited relatively moderate conversion rates (CO₂: ~35%, CH₄: ~20% at 700 °C; CO₂: ~20%, CH₄: ~5% at 750 °C). Catalytic stability showed interaction between nickel species and support.
- 2. Among 4 synthesis methods: **Sol-gel, impregnation, coprecipitation and mechanochemical approach, Sol-gel method** showed **best** results due to **strong interaction** between nickel species and support.
- 3. YSZ presented chemically stability as support for Ni species.
- 4. Gd & Sm incorporation into Ce Zr solid oxide showed positive impacts on the reactivity and reducibility.
- 5. Perovskite (La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O₄ & Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O₄) presented significant reactivity and reducibility with low Ni doping content due to Ni exsolution after reduction in hydrogen and Mn species synergic influence on C-H bond breaking.
- H₂-TPR analysis with reductive properties of the catalysts as evidence to confirm the conditions of the catalysts reaction pretreatment (450 °C & 750 °C) and catalytic results and presented also the nickel species interaction between nickel species and support.
- 7. H₂-TPR hydrogen consumption, **low H/Ni** showed more **uniformed Ni** species **distribution**.
- 8. Interaction strength between the nickel species and the supports: By group: Ni-CZS > Ni/YZ; $La_{0.5}Sr_{1.5}Mn_{0.7}Ni_{0.3}O_4 > Pr_{0.5}Sr_{1.5}Mn_{0.8}Ni_{0.2}O_4$; HSA GDC+NiO > LSA GDC+NiO.
- 9. The mass metal contents of the catalysts were obtained by XRF analysis, the theoretical and experimental results are generally similar in mass nickel.

Perspectives

- 1. Co and Fe incorporation into Ce solid solution and perovskite Site-B to test to avoid coke deposit from elemental design of catalyst.
- 2. Characterizations: XRD for crystal structure; XPS for metal valence state; TPO, SEM/TEM for post-catalyst for coke deposit test.