

1

NOVEL ELECTRODE COATINGS AND INTERCONNECT FOR SUSTAINABLE AND REUSABLE SOEC

Les dérivés de Ca₂Fe₂O₅ envisagés comme nouveaux matriaux d'anode pour cellule d'électrolyse à oxyde solide.

Julien Rivière, Victor Duffort, Aurélie Rolle, Rose-Noëlle Vannier

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR-8181 UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

3^{ème} Réunion Plénières de la Fédération Hydrogène (FRH2) du CNRS 23 Mai 2023

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement N°101058784

The present publication reflects only the author's views. The Commission is not responsible for any use that may be made of the information contained therein.

- NOUVEAU is a three-year project starting from 01/09/2022
- It focuses on making a more substainable Solid Oxide Electrolysis Cell (SOEC) technology by developping NOVEL ELECTRODE COATINGS AND INTERCONNECT
- An interdisciplinary consortium that covers the whole value chain from sustainable materials production to the testing of the final product and product end-oflife options

NOUVEAU Project participants

Motivation and objectives

- SOEC contain REE (Rare Earth Elements)
 - European commission classifies REE as raw critical materials, demand on these materials is expected to rise and EU heavily dependent on its import

- NOUVEAU will work on alternative materials to be used in SOEC and the recycling of REE for SOEC
- Develop solid oxide cell with novel electrode materials with a reduced amount of REE, PGM (Platinum-Group Metals)
 - Recycling target of 50 to 70 %
 - 30 % reduced amount of REE (La)

Role of UCCS in NOUVEAU project

Screen printer @ UCCS

Task 2.3 Developpment of La free or reduced oxygen electrode [M1-M24]

- Calcium based oxides will be explored in a first step (Ca₃Co₄O_{9± δ}, Ca₂Fe₂O_{5± δ} ...)
- Depending on the modeling results (WP2), the study will be extended to the most promising La-free oxides
- Screen printing will be used for the electrode deposition on YSZ or GDC electrolytes

D3.2 ASR on optimised compositions deriving from $Ca_2Fe_2O_{5\pm\delta}$, $Ca_3Co_4O_{9\pm\delta}$ and promising composition evidenced by modeling in WP2 [M24]

Synthesis and characterisation of new materials and electrochemichal studies $[CoO_2]$ **Objectives :** ____ - Good TEC matching with the electrolyte [Ca₂CoO_{3-δ'}] an an - ASR lower than : 0.2 Ω.cm² @ 700 °C $Ca_3Co_4O_{9\pm\delta}$ $Ca_2Fe_2O_{5\pm\delta}$

UCCCS

Brownmillerite

NOUVEAU

$Ca_2Fe_2O_{5\pm\delta}$: A promising air electrode material

7

Promising materials derived from dicalcium iron oxide $Ca_2Fe_2O_{5\pm\delta}$ in literature

$Ca_2(Fe, Co, Mn)_2O_{5\pm\delta}$ as potential candidate for oxygen electrode

Synthesis Ca₂(Fe, Co, Mn)₂O_{5± δ} : **Ternary diagram**

Brownmillerite

Powders prepared via a **nitrate citrate route**: single phase obtained after annealing at different temperatures from 800°C to 1100°C instead of 1200°C by solid state route in the literature

First EIS results on symmetrical cell

Nyquist plot for symmetrical cells Anode material : $Ca_2Fe_{2-x}Mn_xO_{5\pm\delta}$ with x = 0.5, 1, 1.5

- Incompatible microstructure
- Current collection problem
 - Gas diffusion problem

Checking the materials microstructure

SEM images of Ca₂Fe_{1.3}Mn_{0.7}O_{5±δ} electrode sintered at 900 °C (a) ; 1000 °C (b) ; 1100 °C (c); and (d) cross-section of symmetrical cell

Li & al, Journal of Power Sources 238 (2013) 11-16

Electrode delamination for Ca₂Fe_{0.5}Mn_{1.5}O_{6±δ}

Denser electrode due to smaller grains

Cross-section image of symmetrical cell for $Ca_2FeMnO_{5\pm\delta}$

Cross-section image of symmetrical cell for $Ca_2Fe_{0.5}Mn_{1.5}O_{6\pm\delta}$

Testing current collection

Nyquist plot for symmetrical cells Anode material : $Ca_2Fe_{1,5}Mn_{0,5}O_{5\pm\delta}$ with and without Gold layer

Testing current collection

Arrhenius plot for symmetrical cells Anode material : $Ca_2Fe_{2-x}Mn_xO_{5\pm\delta}$ with x = 0.5, 1, 1.5

Probing Electrical conductivity of materials

Arrhenius plot of electrical conductivity $Ca_2Fe_{2-x}Mn_xO_{5\pm\delta}$ with x = 0.5, 1, 1.5

Li & al, Journal of Power Sources 238 (2013) 11-16 Porras-Vazquez, Dalton Trans, (2013), 42, 5421 A.L. Shaula & al, Solid State Ionics 177 (2006) 2923–2930

Meantime, investigation on the other side of the ternary diagram shows interesting results...

Li & al, International Journal of Hydrogen Energy 35 (2010) 9151-9157 Cascos & a, International Journal of Hydrogen Energy 40 (2015) 5456-5468

Currently working on : Increasing Electrical conductivity to lower ASR value

Effect of Co-substitution on electrical conductivity for $Ca_2Fe_{1,5}Mn_{0,5-x}Co_xO_{5\pm\delta}$ with x = 0, 0.1, 0.25, 0.4

Electrical

Some reflective elements for a collaboration with the modeling team...

Effect of La-substitution on electrical conductivity for $Ca_{1-x}La_xMnO_{3\pm\delta}$ with x = 0, 0.01, 0.02, 0.03, 0.04, 0.05

- Type of M cation for partial substitution on A site : La, Bi, Y ...
- Stoechiometry
- Possibility of both A and B site doping

Data adapted from :

Liu & al, Chemical Engineering Journal 408 (2021) 127364

Porras-Vazquez, Dalton Trans, (2013), 42, 5421

CONCLUSION AND PERSPECTIVES

- Thin powders of $Ca_2Fe_{2-x}Mn_xO_{5\pm\delta}$ with x = 0.5, 1, 1.5 were prepared by a nitrate citrate route. Single phase were obtained after annealing at 1100°C instead of 1200°C by solid state route in the literature
- First measurements of ASR on symmetrical cells led to rather high ASR compared to the literature

These high values can be partly explained by a too dense microstructure but also by a too low electrical conductivity

• Best ASR is obtained for the Mn rich composition: $Ca_2Fe_{0.5}Mn_{1.5}O_{6\pm\delta}$ ASR = 1.99 Ω .cm², σ_{el} = 3.61 S.cm⁻¹ @ 800°C

Work going on:

- → Partial substitution on the A site with La, Bi, Y is in progress to increase the electrical conductivity
- → The microstructure will be improved by coarsening the ceramic grains
- → The influence of cathode thickness on ASR will be explored for Ca₂Fe_{0.5}Mn_{1.5}O_{6±δ}

NOVEL ELECTRODE COATINGS AND INTERCONNECT FOR SUSTAINABLE AND REUSABLE SOEC

Thank you for your attention https://www.nouveau-project.eu/

