Influence of architecture for nanostructured Pr₆O₁₁ and GDC composite oxygen electrodes on their electrochemical properties and stability

<u>Michael Spann^{1, 2},</u> Lydia Yefsah^{1, 2}, Rakesh Sharma¹, César Steil¹, Laurent Dessemond¹, Jérôme Laurencin², Elisabeth Djurado¹

¹ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France ² Univ. Grenoble Alpes, CEA, LITEN, DTCH, 17 rue des Martyrs, 38054 Grenoble, France

michael.spann@grenoble-inp.fr

Programme et Equipements Prioritaires de Recherche sur l'Hydrogène Décarbonaté (PEPR-H2) Oxygen electrode materials

Working principle of solid oxide cells (SOC)

One bottleneck of SOC – oxygen electrode

		>
$\boldsymbol{U_{SOFC}(j)} = \boldsymbol{U}_{\mathrm{N}} - \eta_{ohm}(j) - \sum \eta_{activatio}$	n polariz. – $\sum \eta_{con}$	icentration polariz.
$U_N = E^0 - \frac{RT}{4F} \ln \frac{pH_2O}{pO_2^{1/2} pH_2}$		
$\eta_{ohm} = i \times (R_{electrolyte} + R_{contact}) \rightarrow \sigma_{ie}$	$_{\rm on} \propto \exp\left(-\frac{\rm Q}{\rm k_BT}\right)$	Thermal
Processes in active layer: reaction kinetics +	activation energies	activation
Availability of oxygen species (depletion, acc	umulation)	
Model for area-specific polarization resistance	Microstructure	τ : Tortuosity ε : Porosity
(porous, single-phase MIEC)		
		a : Specific surface area (m ⁻¹
		a : Specific surface area (m ⁻¹) D _o : Oxygen self-diffusion coeff (m^{2}/s)
$ASR_{pol} \propto \left(\sqrt{\frac{\tau}{(1-\varepsilon)a} D_o k_o c_o^2} \right)$	Oxygen transport	 <i>a</i> : Specific surface area (m⁻³ <i>D_o</i> : Oxygen self-diffusion coeff. (m²/s) <i>k_o</i> : Oxygen self-surface exchange coeff. (m/s)
$ASR_{pol} \propto \left(\sqrt{\frac{\tau}{(1-\varepsilon)ab_ok_oc_o^2}} \right)$ S.B. Adler, J. Electrochem. Soc., 143 (1996) 3554-3564	Oxygen transport	a : Specific surface area (m ⁻¹) D _o : Oxygen self-diffusion coeff. (m ² /s) k _o : Oxygen self-surface exchange coeff. (m/s) c _o : concentration of oxygen

T-related incovenciences

- Elevated startup times
- Continuous energy demand
- Degradation promoted

Lower operation T?

- Reduced reaction kinetics
- Increased activation energy

- ✓ Electrolyte ohmic losses : doping + thin dimensions
- > Oxygen electrode overpotentials :
 - 1. Choice of electrode materials (intrinsic properties)
 - 2. Modification of microstructure/ architecture

Alternative oxygen electrode materials

Research towards stable, performant SOC materials

Gañan-Calvo (initial droplet size)

- Surface tension, γ(N/m)
- Electrical conductivity, $\sigma(S/m)$
- Solution density, ρ (g/cm³)
- Solution flow rate, Q (ml/h)
- Gañan-Calvo, J. Aerosol Sci., 28 (1997), 249
 - e.g. φ_{εtOH, 1.5 mL/h}: 3.8 μm
- Microstructures with different textures, porosities, particle size

Factors on droplet size

- 1) Initial droplet size physicochemical properties of precursor solutions:
 - Solvent \rightarrow T_B, γ
 - Concentration $\rightarrow \sigma, \gamma$
 - Amount of solution $\rightarrow Q$
- 2) Final droplet size deposition parameters:
 - Conditions during flight \rightarrow T, d, t
 - Amount of solution $\rightarrow Q$

Complex interplay of factors

Preparation of ESD deposits on GDC

- 1. Deposition time
- 2. Deposition temperature
- 3. Nozzle-to-substrate distance
- 4. Solution flow rate

Analysis of morphology

- 1. SEM (surface, cross-sections)
- 2. TEM, XRD (grain size)

Effect of deposition time

Effect of deposition temperature

Calcinated for 2 h, 700 °C * Diethylene glycol butyl ether

Initial droplets: $\varphi = 4.8 \ \mu m$

- 1. Particle size \downarrow for T \uparrow
- 2. Grain size: 40 nm \rightarrow 20 nm
- 3. Microstructural evolution: agglomerated particles for higher T

Effect of nozzle-to-substrate distance

26/05/2023

Effect of solution flow rate

Ethanol: Butyl carbitol * (1:2, wt.), 0.02 M Calcinated for 2 h, 700 °C * Diethylene glycol butyl ether

Gañan-Calvo, J. Aerosol Sci., 28 (1997), 249

- 1. Particle size \downarrow for flow rate \downarrow
- 2. Grain size similar for different inital droplet sizes
- 3. Evolution of microstructure to dense layer

1. Growth of a dense layer

1. Equilibrium of parameters

R. Neagu, Solid State Ionics, 177 (2006), 1981-1984

Plane = constant droplet size

- High T allows high Q and high D
- Small T limits D and Q
- 2. Short deposition time: Dense, thin initial layer
- 3. Longer deposition times: Development of microstructures
- High influence on morphology and porosity via deposition parameters

Influence of calcination temperature on crystallite size

Particles post-calcination

Aggregate formation (XRD: 27-65 nm)

26/05/2023

Calcination of ESD deposits

• Dense interlayer already at low T \rightarrow CT_{ion}

H₂O: Butyl carbitol * (1:2, wt.), 0.02 M

Q = 1 mL/h, T = 300 °C, d = 20 mm Calcinated for 2 h

900 °C, 10 days: partial decomposition, unidentified phases (ongoing)
 L. Yefsah, Solid State Ionics (submitted)

Study of symmetrical cell architectures (Focus on interface AFL/CCL)

- 1. Focus on AFL/CCL interface (CCL composition, CCL thickness)
- 2. Optimization of AFL sintering temperature
- 3. Comparison of ESD morphology in pratical application

Analysis of electrochemical behavior

- 1. EIS
 - $(V_a = 0.02 \text{ V}, 1 \text{ MHz} 50 \text{ mHz}, \text{Au grids } 1024 \text{ mesh/cm}^2)$
- 2. R_{pol} extraction

CCL thickness

ESD calcination: 700 °C, 2h

CCL thickness (µm)

15

30

45

60

450

窃

R_{pol, 600 °C}

 $0.030 \Omega \text{ cm}^2$

 $0.026 \ \Omega \ cm^2$

 $0.032 \ \Omega \ cm^2$

 $0.032 \Omega \text{ cm}^2$

1.4

500

뵻

1.3

Optimization of AFL sintering temperature

PGSTAT 302N, V_a = 0.02 V, 1 MHz - 50 mHz, Au grids 1024 mesh/cm²

Influence of electrode microstructure on R_{pol}

$d_{size} \propto \left(rac{ ho arepsilon_0 Q^3}{\gamma \sigma} ight)^{1/6}$

		Gañan	añan-Calvo, J. Aerosol Sci., 28 (1997), 249	
Solution	σ (mS/cm)	T _b * (°C)	Droplet size (µm)	Particle size ⁺ (nm)
EtOH	76.5	88.0	3.8	20
EtOH:H ₂ O (1:2)	1.61x10 ³	111.2	2.0	20
H ₂ O:BC (1:2)	3.5x10 ²	192.8	2.7	35
EtOH:BC (1:2)	17.3	193.3	4.8	35
BC	1.89	206.4	6.9	35

* TGA + DTA; ⁺ SEM + Image J analysis

• Search of alternative SOC oxygen electrode materials (reduce operation temperature)

○ Investigation of Pr_6O_{11} → Decomposition product of $La_{1-x}Pr_xNiO_{4+\delta}$

- 1. Synthesis of nanostructured Pr_6O_{11} electrodes for SOC by ESD
- 2. High controll of process via deposition parameters (T, d, Q, t, solvent)
- 3. Evaluation of thermal stability window on GDC and YSZ electrolytes
- 4. Preparation of symmetrical SO cells on GDC electrolytes
- 5. Architecture of symmetrical cells optimized via EIS

- \rightarrow Electrostatic Spray Deposition
- \rightarrow Microstructural studies
- \rightarrow 800 °C, IT-SOC
- \rightarrow ESD + Screen-printing
- \rightarrow ESD calcination at 600 °C, 2h
 - LSM-CCL of 30 µm thickness (700 °C, 2h)
 - $R_{pol, 600 \circ c} = 0.02 \Omega \text{ cm}^2$ for columnar microstructure

Perspectives: composite oxygen electrodes

R1: Direct oxidation at TPB R2: Ionic transfer (electrolyte to electrode) R3: Interstitial diffusion + excorporation + formation of adatoms **R4:** Association + desorption G Sdanghi, J. Electrochem. Soc., 169 (2022), 034518 L Yefsah, (2023) PhD Thesis, UGA O_2

Pr₆O₁₁⁵

- SOEC: interstitial filling, parallel surface + bulk path, stable
 SOFC: depletion of interstitials (bulk path limiting)
 1. Performance
 - 2. Physical delamination (e.g. LNO)

Pr₆O₁₁ could behave similar to LSM (detailed study of charge transfer mechanisms required)

 3.4×10^{-8}

 5.4×10^{-7}

26/05/2023

Preparation of a triple layer composite Pr₆O₁₁-GDC electrode

Sample preparation

Thank you for your attention!

Acknowledgements

R. Sharma (Ph.D, 2016)

N. Khamidy (Ph.D, 2020) LABEX CEMAM

L. Yefsah (Ph.D student) ANR ECOREVE

E. Djurado C. Steil L. Dessemond F. Fournet-Fayard

J. Laurencin B. Castay

network on Hydrogen energy

3^{ème} REUNION PLENIERES de la Fédération HYDROGENE (FRH2) du CNRS

attend of

22 -26 mai 2023 Saint-Gilles (La Réunion)

Preparation of a triple layer composite Pr₆O₁₁-GDC electrode

Infiltration using precursors

- R_{pol} (650 °C, air) = 0.16 Ω cm²
 NV Lyskov, *Russ. J. Electrochem*, 57 (2021), 1070
- R_{pol} (600 °C, air) = 0.074 Ω cm² *M Khoshkalam, J. Electrochem. Soc., 167 (2020), 024505*
 R_{pol} (600 °C, air) = 0.028 Ω cm² *C Nicollet, Int. J. Hydrog. Energy, 41 (2016), 15538*
 1.56 W cm⁻² at 700 °C (PrOx in AFL) *E Dogdibegovic, J. Power Sources., 410 (2019), 91*
 - 1.5 A cm⁻² at 1.4 V (50 vol.% steam on H₂ side, 700 °C)
 - *R Wang,* Energy Technol., 7 (2019), 1801154

Sample preparation

	O_2 - electrode Active triple layer		
30 µm	LSM-CCL (SP)		
5-15 μm	$La_2NiO_{4+\delta}$,/Pr ₆ O ₁₁ (ESD)		
4 µm	GDC poreux (SP)		
3 µm	GDC barrière (SP)		
10 µm	Electrolyte (8YSZ)		
250 µm	Electrode H ₂ (Ni-YSZ)		

ESD - "infiltration" of porous GDC - conditions

Smallest particles possible
 Solvent = EtOH : H₂O (1:2, vol.)
 T = 350 °C
 d = 50 mm
 Q = 1.0 mL/h

26/05/2023

Perspectives: composite oxygen electrodes

SOEC mode (for LNO)

R1: Direct oxidation at TPB R2: Ionic transfer (electrolyte to electrode) R3: Interstitial diffusion + excorporation + formation of adatoms **R4:** Association + desorption

G Sdanghi, J. Electrochem. Soc., 169 (2022), 034518 L Yefsah, (2023) PhD Thesis, UGA

Material	D* (cm²/s)	k* (cm/s)
LNO ³	1.0×10^{-6}	$1.5 imes 10^{-8}$
PNO ⁴	5.0×10^{-7}	2.5×10^{-8}
Pr ₆ O ₁₁ ⁵	3.4×10^{-8}	5.4×10^{-7}

De Souza, Solid State Ion., 106 (1998), 175; ² Audinot, (19 Université de Bordeaux; ³ Skinner, Solid State Ion., 135 (2000), 70 State Ion., 176 (2005), 2717; ⁵ Nicollet, Int. J. Hydrog. Energy, 41

- SOEC: filling of interstitials, parallel surface + bulk path, stable SOFC \checkmark $\frac{1}{2}O_2 + V_0^{"} + 2e^{-}$ 0_{0}^{x} SOFC: depletion of interstitials (bulk path limiting) ٠. SOEC Performance 1.
 - Physical delamination (e.g. LNO) 2.

26/05/2023