

Durability study of the nanostructured LaPrNiO_{4+ δ} electrode for solid oxide cells

<u>Elisabeth Djurado¹</u>, Nur Istiqomah Khamidy^{1,2}, Dario Ferreira Sanchez³, Federico Monaco^{2,} Jérôme Laurencin²

¹Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble ²Univ. Grenoble Alpes, CEA/LITEN, 17 rue des Martyrs, 38054, Grenoble, France ³Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Elisabeth.Djurado@grenoble-inp.fr

Part II: Durability Study Part III: Post-mortem Analyses Conclusion

Intermediate Temperature SOCs (IT-SOCs)

Understanding of the reaction mechanisms

For LNO electrode

$$\xi = \frac{surface \, path}{bulk \, path}$$

The ratio $\boldsymbol{\xi}$ was found to increase when increasing the <u>cathodic</u> <u>overpotential (SOFC)</u>, whatever the investigated temperature

Understanding of the reaction mechanisms

Coll. Jérôme Laurencin, CEA-LITEN Giuseppe Sdanghi et al., Journal of the Electrochemical Society (2022) P.h.D. Thesis Lydia Yefsah, June 2023

Under cathodic polarization (SOFC): the excorporation reaction (bulk path) becomes more and more limited, whereas the direct oxidation at TPBIs (surface path) is still active

LNO is progressively depleted in interstitial oxygen under these conditions

This result explain the dissymmetry of the electrode polarization curves with the better performances observed under anodic polarization (SOEC mode)

Conclusion

Intermediate Temperature SOCs (IT-SOCs)

Large oxygen electrode overpotential → Enhance the ORR/OER

• Factors affecting ORR/OER

(2015) 32-37

Part II: Durability Study

Material selection: rare-earth nickelates

INTRINSIC PROPERTIES

$La_{2-x}Pr_{x}NiO_{4+\delta}$ [$0 \le x \le 2$]

Selected composition: x = 1; LaPrNiO_{4+ δ} (LPNO) Electrolyte: Ce_{0.9}Gd_{0.1}O_{2- δ} (GDC)

Sharma et al. J. Mater. Chem. A 5 (2017) 1120 Takahashi et al., J. Am. Ceram. Soc. 93 (2010) 2329-2333; Amow and Skinner, J. Solid State Electrochem. 10 (2006) 538-546; Vibhu et al., Solid State Ionics 278 mixed ionic-electronic conductor (MIEC)
 sufficient oxygen diffusion (3-5.10⁻⁸ cm² s⁻¹ at 700 °C) and surface exchange coefficients (0.5-1.10⁻⁶ cm s⁻¹ at 700 °C)

- \succ sufficient **conductivity** (70 100 S cm⁻¹ at 700 °C)
- > similar TEC to GDC electrolyte ($\alpha_{GDC} = 13.8 \cdot 10^{-6} \text{ K}^{-1}$)
- ➢ phase stability with GDC

+ COMPOSITION

+ MICROSTRUCTURE, ARCHITECTURE

- \rightarrow increase the specific surface area
- → unique surface and interface properties Fan et al, Nano Energy 45 (2018) 148-176

...Performance

...Durability? Limited available literature Vibhu et al. J. Energy Chem. 46 (2020) 62-70

Taylor cone

Good adhesion

Part II: Durability Study

Part III: Post-mortem Analyses Conclusion

Electrostatic Spray Deposition (ESD) – Microstructure of AFL

The impacting droplet size plays an important role on the microstructure

Gañan-Calvo equation on droplet size:

Solution flow rate, Q(ml/h)

Gañan-Calvo et al. J. Aerosol Sci., 28 (1997) 249-275

 \succ (LP)3N2 in the ESD layer is found to be electrochemically active

 $1000/T (K^{-1})$ **NI Khamidy** et al., Journal of Electroanalytical Chemistry 2019

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

0.1

Rpol

Au grid

PNO

Au grid

GDC

WE

Introduction	Part I:	Part II:	Part III:	Conclusion
	Design & Performances	Durability Study	Post-mortem Analyses	
		$\bigcirc \bigcirc \bigcirc$		

2. Preliminar durability on a real SOEC (complete cell)

- Commercial hydrogen electrode-supported half-cell at 700 °C for ~ 900 h
- $H_2O/H_2 = 90/10$, steam conversion rate = 20%
- Anodic polarization of 200 mA cm⁻² on the oxygen electrode (electrolysis mode)
- Glass sealing was carried out at 860 °C for 1.5 h.

2. Preliminar durability on a real SOEC (complete cell)

EIS before and after ageing under anodic polarization and time (SOEC mode)

Introduction	l	Pa Design & I	art I: Performances	Part II: Durability Study ○ ○ ●	Pos	Part III: t-mortem Analyses	Conclusion
Summary on durability							
			Symr	netrical cell	<u>(</u>	Complete cell	
	SOFC Strong degradation (rate 15.5 V% kh ⁻¹ ; 219 mV kh ⁻¹)						
		<u>SOEC</u>	Stable	performance	Sta	ble performance	ce
	Different behavior in SOFC and SOEC operation						
			 Micro Struct Interd Deland 	structural change ural destabilizatio iffusion, reactivity ination on the car	s on y thodic sid	es ?	

Post-mortem analyses are required to understand the different behavior of LPNO under cathodic and anodic polarizations

NI Khamidy et al, Journal of Power Sources 450, 2020, 227724

Part I: Design & Performances Part II: Durability Study

Conclusion

Microstructural characterizations: FIB-SEM and 3D reconstruction

Part I: Design & Performances Part II: Durability Study Part III: Post-mortem Analyses O O O O O O Conclusion

Microstructural characterizations: SEM and 3D reconstruction

Part II: Durability Study Part III: Post-mortem Analyses Conclusion

Structural characterization: Synchrotron μ -XRD and μ -XRF

On a beamline at Swiss Light Source (SLS), Paul-Scherrer Institute (PSI), Switzerland In collaboration with Federico Monaco (CEA-Liten) and Dario Ferreira Sanchez (PSI)

Objectives: detection of phases and elemental distribution in the volume of the electrode

- XRF + XRD patterns measured simultaneously;
- Standard step sizes used: 500 nm, and 250 nm for zoom over selected areas

Part I: Design & Performances Part II: Durability Study Part III: Post-mortem Analyses 0000000 Conclusion

Structural characterization: Synchrotron μ -XRD and μ -XRF

Introduction	Part I: Design & Performances	Part II: Durability Study	Part III: Post-mortem Analyses 00000000	Conclusion
Struct	ural characteriz	ation: Synchrot	ron µ-XRD and	μ-XRF
2D XRD maps				
Pristine DL GDC electrode	LPNO	(LP)3N2 P	Pr ₆ O ₁₁ 10 μm	
Anodic side (SOEC) symmetrical cell	PNO (LP)3N2 Pr ₆ O ₁₁	(LP)4N3 Uniform desta microstructure	bilization under polarization (SP or ESD)	regardless of the
2D XRF maps				
Pristine DL electrode	Gd Anodi (SO) symmetric	c side EC) etrical		
La mt_southa_001_La_L		La Ni No	sign of element diffusion bet electrode and the elect	tween the LPNO trolyte
Pr st.spectba_001_P/_L	Pt st.spectu. 801. PLL	Pr Pt		19

Introduction	Part I: Design & Performa	nces	Part II: Durability Study	Part III: Post-mortem Analyse ○○○○○○●	Conclusion	
Summary						
	<u>Thermal ag</u> ESD layer (700 °C for 100	<u>ing</u>)0 h)	Solution Symmetrical and complete cells (700 °C for +900 h)		SOFC operation Symmetrical cells (700 °C for +900 h)	
Performance					Strong degradation	
Interface			No delamin	ation	Strong delamination	
Microstructure		No changes				
Structural stabilization	Relatively stable Chemical destabilization into the same compound		me compounds			
The chemical destabilization of LPNO might be accelerated under SOFC (low oxygen partial pressure)		 Proposed explanations: Depletion of oxygen interstitial under cathodic polarization → stronger destabilization especially at the electrode/electrolyte interface → inducing delamination Phase transition of Pr₆O₁₁ under reducing atmosphere Hyde et al, Phylos. Trans. R. Soc. A 259 (1966) 583-614 				

The different microstructures between ESD and SP layers do not affect the destabilization

NI Khamidy et al, Journal of Power Sources 450, 2020, 227724

- Microstructure, interfaces, and electrode design play an important role on the electrochemical activity of LPNO electrode
- The best electrochemical performance is found for the triplelayer architecture
- LPNO electrode shows a promising durability as an oxygen electrode for solid oxide electrolysis cell (SOEC)

La Fédération de Recherche Hydrogène du CNRS

Acknowledgments

Nur I. Khamidy, P.h.D 2020

Federico Monaco

liten ^{Ceatech}

Funding Project Mimosa (Institut Carnot Energies du Futur)

