

Développement d'un procédé « vert » pour la mise en forme de cœur de piles SOFC par coulage en bande séquentiel en voie aqueuse et cofrittage

Laura Parvaix

3^{ème} année de thèse de doctorat

Plénières FRH2 2023 24/05/2023

Directeurs de thèse : Patrick Rozier & Pascal Lenormand

Plan de présentation

- Contexte
- Bibliographie
 - Procédé de coulage en bande
 - Formulation et préparation de barbotines

• Résultats

- Formulation de barbotines aqueuses non toxiques
- Coulage séquentiel bicouche
- > Ajout d'une couche barrière de diffusion
- > Ajout d'une anode structurale
- Conclusion

- → Mise en forme de monocouche ou multicouches céramiques
- ✓ Bas coût
- ✓ Procédé continu
- ✓ Mise à l'échelle industrielle possible
- → Etapes du coulage en bande à maîtriser

1

PRÉPARATION BARBOTINE

Suspension de poudre d'oxyde avec une matrice polymère

PRÉPARATION SUBSTRAT PAR COULAGE

Goulart, International Journal of Applied Ceramic Technology (2017)

- Laminage critique : interfaces à contrôler

Goulart, International Journal of Applied Ceramic Technology (2017)

Goulart, International Journal of Applied Ceramic Technology (2017)

Procédé choisi pour la conception de cellules AS-SOFC

BARBOTINES

- Stabilité
- Comportement rhéologique

Etat de l'art : Barbotines pour applications SOFC/EHT

Base organique : xylène, butanone, éthanol, toluène Base aqueuse : peu utilisée

Etat de l'art : Barbotines pour applications SOFC/EHT

* 5-chloro-2-méthyl-2H-isothiazol-3-one et de 2-méthyl-2H-isothiazol-3-one

Configuration AS-SOFC

Procédé de fabrication SOFC doit :

- Être adapté pour matériaux usuels
- Être manufacturable à grande échelle
- Utiliser composés organiques non toxiques
- Être à bas coût :
 - Procédé polyvalent
 - Moins de traitements thermiques possibles

Configuration AS-SOFC

Procédé de fabrication SOFC doit :

- Être adapté pour matériaux usuels
- Être manufacturable à grande échelle
- Utiliser composés organiques non toxiques -
- Être à bas coût :
 - Procédé polyvalent
 - Moins de traitements thermiques possibles -

NiO-8YSZ

Procédé choisi :

- Voie tout oxyde (compatibilité T_{élaboration})
- Coulage en bande séquentiel + sérigraphie

RÉSULTATS

Composés	Nature	
Poudre	8YSZ (TOSOH)	Solvants conventionnels
Solvant		← Éthanol, xylène,

Composés	Nature		
Poudre	8YSZ (TOSOH)	So	lvants conventionnels :
Solvant	eau	€tł	nanol, xylène,

Composés	Nature	—
Poudre	8YSZ (TOSOH)	—
Solvant	eau	
Dispersant	ammonium polyméthacrylate	Dispersant électrostéariq

Composés	Nature
Poudre	8YSZ (TOSOH)
Solvant	eau
Dispersant	ammonium polyméthacrylate

Mélangeur planétaire centrifugeur <u>Mélange + dégazage : 30min</u>

Composés	Nature
Poudre	8YSZ (TOSOH)
Solvant	eau
Dispersant	ammonium polyméthacrylate

 \rightarrow Quantification de la stabilité de la poudre

Composés	Nature
Poudre	8YSZ (TOSOH)
Solvant	eau
Dispersant	ammonium polyméthacrylate

 \rightarrow Quantification de la stabilité de la poudre

→ Optimisation qté dispersant/poudre

Images MEB échantillons frittés 1600°C 2h

2 µm

9

Images MEB échantillons frittés 1600°C 2h

2 um

Optimisation de la formulation pour l'électrolyte

30

20

10

0

Quantité de dispersant (Darvan CN)

par rapport à la quantité de poudre YSZ (%)

Composés	Nature	
Poudre	8YSZ (TOSOH)	
Solvant	eau	
Dispersant	ammonium polyméthacrylate	Liant base aqueuse conventionnel :
Liant	alcool polyvinylique	 Mowilith

Composés	Nature	
Poudre	8YSZ (TOSOH)	
Solvant	eau	
Dispersant	ammonium polyméthacrylate	
Liant	alcool polyvinylique	Plastifiant de faible masse moléculaire
Plastifiant	PEG400	← → Gain en flexibilité du polymère

Composés	Nature
Poudre	8YSZ (TOSOH)
Solvant	eau
Dispersant	ammonium polyméthacrylate
Liant	alcool polyvinylique
Plastifiant	PEG400

m_{liant}/m_{poudre} =10%

Bandes crues après séchage

Composés	Nature	_
Poudre	8YSZ (TOSOH)	
Solvant	eau	M
Dispersant	ammonium polyméthacrylate	
Liant	alcool polyvinylique	= fl
Plastifiant	PEG400	= d

Minimiser quantité de liant tout en assurant un réseau polymère dans toute la bande
= flexibilité
= découpable à la forme souhaitée

 $m_{liant}/m_{poudre} = 18\%$

Bandes crues après séchage

Composés	Nature
Poudre	8YSZ (TOSOH)
Solvant	eau
Dispersant	ammonium polyméthacrylate
Liant	alcool polyvinylique
Plastifiant	PEG400
Tensio-actif	polysorbate20
Anti-mousse	octanol

Utilisation eau + PVA : = ajout d'un tensio-actif et anti-mousse

Composés	Nature	-
Poudre	8YSZ (TOSOH)	_
Solvant	eau	
Dispersant	ammonium polyméthacrylate	
Liant	alcool polyvinylique	= ajout
Plastifiant	PEG400	= meille
Tensio-actif	polysorbate20	
Anti-mousse	octanol	

Utilisation eau + PVA : = ajout d'un tensio-actif et anti-mousse = meilleure dispersion sans bulles

Images MEB échantillons frittés 1600°C 2h

PROPRIÉTÉS DE LA BARBOTINE

	Electrolyte	
	[%m]	
Poudre 8YSZ	47,3	
Solvant	34,0	
Dispersant	1,2	
Liant	8,5	
Plastifiant	8,5	
Tensio-actif	0,3	
Antimousse	0,2	

Barbotine **stable** et **rhéofluidifiante** nécessaire pour coulage en bande

PROPRIÉTÉS DE LA BARBOTINE

	Electrolyte	
	[%m]	
Poudre 8YSZ	47,3	
Solvant	34,0	
Dispersant	1,2	
Liant	8,5	
Plastifiant	8,5	
Tensio-actif	0,3	
Antimousse	0,2	

Mesure de la stabilité au Turbiscan :

PROPRIÉTÉS DE LA BARBOTINE

	Electrolyte	
	[%m]	
Poudre 8YSZ	47,3	
Solvant	34,0	
Dispersant	1,2	
Liant	8,5	
Plastifiant	8,5	
Tensio-actif	0,3	
Antimousse	0,2	

Mesure de la stabilité au Turbiscan :

• Stable pendant 7 jours minimum

PROPRIÉTÉS DE LA BARBOTINE

	Electrolyte	
	[%m]	
Poudre 8YSZ	47,3	
Solvant	34,0	
Dispersant	1,2	
Liant	8,5	
Plastifiant	8,5	
Tensio-actif	0,3	
Antimousse	0,2	

• Stable pendant 7 jours minimum

• **Réutilisable** plusieurs mois après sa préparation (après mélange)

PROPRIÉTÉS DE LA BARBOTINE

Analyse rhéologique :

Contrainte de cisaillement (s⁻¹)

→ Barbotine **rhéofluidifiante**

Apte au coulage : s'écoule sous la lame, conserve sa forme au séchage

COULAGE SÉQUENTIEL BI-COUCHE

COULAGE SÉQUENTIEL BI-COUCHE

cathode			Electrolyte	Anode fonctionnelle
DBL			[%m]	[%m]
électrolyte ← dense		Poudre 8YSZ	47,3	18,3
	Poudre NiO	0	27,5	
AF — poreuse		Solvant	34,0	35,6
	Dispersant 1	1,2	1,4	
		Liant	8,5	8,3
		Plastifiant	8,5	8,3
	Tensio-actif	0,3	0,4	
AS		Antimousse	0,2	0,2

Configuration AS-SOFC

COULAGE SÉQUENTIEL BI-COUCHE

cathode			Electrolyte	Anode fonctionnelle
DBL			[%m]	[%m]
électrolyte 🔶 dense	Poudre 8YSZ	47,3	18,3	
	Poudre NiO	0	27,5	
AF – poreuse		Solvant	34,0	35,6
	poreuse	Dispersant 1	1,2	1,4
	Liant	8,5	8,3	
	Plastifiant	8,5	8,3	
	Tensio-actif	0,3	0,4	
AS		Antimousse	0,2	0,2
Configuration AC	ΩFC	Bar • Ajout de NiO	botine pour l'ai	node :
<u>onfiguration AS-S.</u>	<u>OFC</u>			

COULAGE SÉQUENTIEL BI-COUCHE

cathode			Electrolyte	Anode fonctionnelle
DBL			[%m]	[%m]
		Poudre 8YSZ	47,3	18,3
électrolyte 🔶 dense	Poudre NiO	0	27,5	
AF — poreuse		Solvant	34,0	35,6
	Dispersant 1	1,2	1,4	
AS		Liant	8,5	8,3
	Plastifiant	8,5	8,3	
	Tensio-actif	0,3	0,4	
	Antimousse	0,2	0,2	
Barbotine pour l'anode : • Ajout de NiO • Configuration AS-SOFC • Quantité poudre diminuée = gain de porosité				node : es/poudre/eau gain de porosité

COULAGE SÉQUENTIEL BI-COUCHE

1^{ère} configuration testée avec le **cocoulage** des barbotines d'anode fonctionnelle et d'électrolyte

<u>1^{er} configuration testée</u>

COULAGE SÉQUENTIEL BI-COUCHE

1^{ère} configuration testée avec le **cocoulage** des barbotines d'anode fonctionnelle et d'électrolyte

COULAGE SÉQUENTIEL BI-COUCHE

1^{ère} configuration testée avec le **cocoulage** des barbotines d'anode fonctionnelle et d'électrolyte
COULAGE SÉQUENTIEL BI-COUCHE

1^{ère} configuration testée avec le **cocoulage** des barbotines d'anode fonctionnelle et d'électrolyte

COULAGE SÉQUENTIEL BI-COUCHE

Coulage séquentiel (2 couches)

Déliantage et frittage sous charge poreuse (2 g/cm²)

Définition du profil de déliantage par ATG de bandes sèches

Déliantage et frittage sous charge poreuse (2 g/cm²)

Utilisation charge poreuse

- Evite déformation verticale
- Permet le retrait = densification
 (ΔØ=30%)
- Elimination gaz via porosité

Déliantage et frittage sous charge poreuse (2 g/cm²)

POROUS YSZ LOAD

NiO-YSZ anode layer

8YSZ electrolyte layer YSZ SUPPORT

Utilisation charge poreuse

- Evite déformation verticale
- Permet le retrait = densification
 (ΔØ=30%)
- Elimination gaz via porosité

Déliantage et frittage sous charge poreuse (2 g/cm²)

Utilisation charge poreuse

- Evite déformation verticale
- Permet le retrait = densification
 (ΔØ=30%)
- Elimination gaz via porosité

CARACTÉRISATIONS MICROSTRUCTURALES DU BI-COUCHE

<u>Images MEB : Demi-cellule cofrittée à 1500°C</u> <u>2h avec charge 2g/cm²</u>

CARACTÉRISATIONS MICROSTRUCTURALES DU BI-COUCHE

<u>Images MEB : Demi-cellule cofrittée à 1500°C</u> <u>2h avec charge 2g/cm²</u>

• Electrolyte dense

CARACTÉRISATIONS MICROSTRUCTURALES DU BI-COUCHE

<u>Images MEB : Demi-cellule cofrittée à 1500°C</u> <u>2h avec charge 2g/cm²</u>

- Electrolyte **dense**
- NiO-8YSZ poreux
- Interface bien délimitée et sans délamination

DÉPÔT D'UNE COUCHE CATHODIQUE PAR SÉRIGRAPHIE

- Sérigraphie encre chargée à 60%m en poudre (94%m terpinéol + 6%m éthycellulose)

- Consolidation 1150°C 2h

Anode Ø20mm Cathode Ø10mm

DÉPÔT D'UNE COUCHE CATHODIQUE PAR SÉRIGRAPHIE

 Sérigraphie encre chargée à 60%m en poudre (94%m terpinéol + 6%m éthycellulose)

- Consolidation 1150°C 2h

Anode Ø20mm Cathode Ø10mm

Couche **poreuse et continue** de LNO

Densité de puissance max = 170mW/cm²

- Problèmes de scellement banc
- Mais protocole de co-coulage validé
 - → Procédé à développer pour ajouter les couches de DBL et anode structurale

CARACTÉRISATIONS POST-MORTEM

CARACTÉRISATIONS POST-MORTEM

NiO résiduel + gradient de microstructure

CARACTÉRISATIONS POST-MORTEM

NiO résiduel + gradient de microstructure
 → Scellement inefficace avec cellules boutons
 → Anode structurale à ajouter

CARACTÉRISATIONS POST-MORTEM

→ Ajout de la couche DBL nécessaire

	Electrolyte	DBL
	[%m]	[%m]
Poudre 8YSZ	47,3	0
Poudre 10CGO	0	49,0
Solvant	34,0	32,1
Dispersant 1	1,2	0,8
Liant	8,5	8,8
Plastifiant	8,5	8,8
Tensio-actif	0,3	0,2
Antimousse	0,2	0,2

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION

	Electrolyte	DBL
	[%m]	[%m]
Poudre 8YSZ	47,3	0
Poudre 10CGO	0	49,0
Solvant	34,0	32,1
Dispersant 1	1,2	0,8
Liant	8,5	8,8
Plastifiant	8,5	8,8
Tensio-actif	0,3	0,2
Antimousse	0,2	0,2

Barbotine pour la DBL :

• 8YSZ remplacée par CGO

	Electrolyte	DBL
	[%m]	[%m]
Poudre 8YSZ	47,3	0
Poudre 10CGO	0	49,0
Solvant	34,0	32,1
Dispersant 1	1,2	0,8
Liant	8,5	8,8
Plastifiant	8,5	8,8
Tensio-actif	0,3	0,2
Antimousse	0,2	0,2
Barbotine pour la DBL : 8YSZ remplacée par CGO		

- Conservation ratio organiques/poudre/eau
- Quantité poudre augmentée (CGO + réfractaire)

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION

→ Protocole de co-coulage appliqué au trois barbotines

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION

 \rightarrow Protocole de co-coulage appliqué au trois barbotines

<u>MEB images : Section de la demi-cellule frittée</u> (1500°C 2h)

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION

 \rightarrow Protocole de co-coulage appliqué au trois barbotines

<u>MEB images : Section de la demi-cellule frittée</u> (1500°C 2h)

Délamination interface 8YSZ/CGO
 → Incompatibilité des CET et des retraits à la densification

Matériaux	∆Ø _{cru/fritté}	CET (10 ⁻⁶ K ⁻¹) de 200 à 850°C
8YSZ	36%	10,1
10CGO	26%	12,5

Matériaux	ΔØ _{cru/fritté}	CET (10 ⁻⁶ K ⁻¹) de 200 à 850°C
8YSZ	36%	10,1
10CGO	26%	12,5

Matériaux	∆Ø _{cru/fritté}	CET (10 ⁻⁶ K ⁻¹) de 200 à 850°C
8YSZ	36%	10,1
10CGO	26%	12,5

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION

Matériaux	∆Ø _{cru/fritté}	CET (10 ⁻⁶ K ⁻¹) de 200 à 850°C
8YSZ	36%	10,1
10CGO	26%	12,5
10CGO-8YSZ(50% _m)	30%	11,1

Ajout d'une couche composite à l'interface 8YSZ/10CGO

- = Gradient des différentes phases
- = Gradient de comportements thermomécaniques

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION

Coulage séquentiel (4 couches)

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION

Coulage séquentiel (4 couches)

Séchage T_{amb}

Déliantage et frittage sous charge poreuse (2 g/cm²) + Sérigraphie LNO

Anode Ø20mm Cathode Ø10mm

- Co-coulage de 4 couches possibles
- Procédé 4 couches à valider avec tests électrochimiques et caractérisations post-mortem

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION Fiaxell

Conditions :

- Côté cathode : Air + grille d'or
- Côté anode : H₂ + mousse Ni

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION Fiaxell

Conditions :

- Côté cathode : Air + grille d'or
- Côté anode : H₂ + mousse Ni

AJOUT DE LA COUCHE BARRIÈRE DE DIFFUSION Fiaxell

Conditions :

- Côté cathode : Air + grille d'or
- Côté anode : H₂ + mousse Ni
- 350 cathode 1.2 300 1.0 250 electrolyte 200 (zub///mu) 0.8 € ш^{0.6} 0.4 100 0.2 50 0.0 200 600 800 1000 1200 400 j (mA/cm²)
- Electrolyte dense de 80µm
- Pas de La₂Zr₂O₇ (DRX) : durabilité cellule
- \rightarrow Procédé évolutif et modulable (2 \rightarrow 4 couches)
- ightarrow AS à ajouter

L.Parvaix, Planar SOFC fabricated by aqueous reverse sequential tape-casting of the anode, electrolyte and barrier layer, Energy Technology

ğ

(a)

AJOUT DE L'ANODE STRUCTURALE

AS = **porosité supplémentaire** permettant une meilleure diffusion du combustible à travers l'anode

AJOUT DE L'ANODE STRUCTURALE

AS = **porosité supplémentaire** permettant une meilleure diffusion du combustible à travers l'anode

Ajout d'un agent porogène dans une barbotine supplémentaire

AJOUT DE L'ANODE STRUCTURALE

AJOUT DE L'ANODE STRUCTURALE

 \rightarrow Protocole de co-coulage appliqué au 5 barbotines \rightarrow Cofrittage \rightarrow Sérigraphie

- Co-coulage de 5 couches possibles
- Configuration cellule conforme au cahier des charges

Image MEB : cellule AS et DBL inclue avant test

AJOUT DE L'ANODE STRUCTURALE

 \rightarrow Protocole de co-coulage appliqué au 5 barbotines \rightarrow Cofrittage \rightarrow Sérigraphie

- Co-coulage de 5 couches possibles
- Configuration cellule conforme au cahier des charges

Image MEB : cellule AS et DBL inclue avant test

AF SANS agent porogène AS AVEC agent porogène

Image MEB : cellule AS et DBL inclue avant test

AJOUT DE L'ANODE STRUCTURALE

+30% de P avec anode structurale

- Co-coulage de 5 couches possibles
- Configuration cellule conforme au cahier des charges

CGO

Découpage COFRITTAGE

• PROCÉDÉ À BAS COÛT :

- 2 Tth

- barbotines aqueuses et composés organiques non toxiques (traitement déchets facilité)

• PROCÉDÉ À BAS COÛT :

- 2 Tth
- barbotines aqueuses et composés organiques non toxiques (traitement déchets facilité)
- PROCÉDÉ DE COULAGE SÉQUENTIEL MODULABLE (DESIGN & MATERIAUX) :
 - Nature poudre
 - Ratios eau/poudre/organiques

Contrôle épaisseurs et microstructures

→ Changement d'échelle et de forme possible :

Anode Ø24mm (+20%) Cathode Ø20mm

→ Changement d'échelle et de forme possible :

Anode Ø24mm (+20%) Cathode Ø20mm

→ Méthode transférable pour SOFC métal support via voie tout oxyde

Perspectives

\rightarrow Changement d'échelle pour cellules 5 \rightarrow 25cm²

Maîtrise du séchage et du cofrittage (collaboration J. Aguilar-Arias, Universidad Nacional de Colombia) :

Bande anode structurale crue

Perspectives

\rightarrow Changement d'échelle pour cellules 5 \rightarrow 25cm²

Maîtrise du séchage et du cofrittage (collaboration J. Aguilar-Arias, Universidad Nacional de Colombia):

Bande anode structurale crue

→ Tests cellules avec joints de scellement de vitrocéramique développés au CIRIMAT

Image SEM ES : section assemblage 8YSZ/vitrocéramique/acier

Merci pour votre attention !

Laura Parvaix

Encadrants : Patrick Rozier, Pascal Lenormand

Joints de scellement vitrocéramiques de type BXAS (avec X = CaO, MgO et B2O3).

	BaO	SiO ₂	CaO	MgO	B ₂ O ₃	Al ₂ O ₃
% _{molaire}	36	30,7	10,3	10,3	10,3	2,6

Composition molaire du verre

Méthode d'extrusion de pâte (éthylcellulose et terpinéol) contenant le précurseur de la vitrocéramique :

- Poudre de xérogel (voie sol-gel)

Synthèse gel Séchage Xérogel de xérogel + calcination

- Poudre de verre (voie solide-solide)

 $\begin{array}{ccc}
 Mélange de \\
 poudres d'oxydes \end{array} \xrightarrow[]{7 1350°C puis} \\
 trempe à l'eau \end{array} \xrightarrow[]{$Verre$} \\
 Broyage \\
 Poudre de verre \\
\end{array}$

Puig, J. Développement de verres de scellement par voie sol-gel en vue de l'élaboration d'une Serial Repeat Unit (SRU) pour piles à combustibles SOFC. Thèse de doctorat. Université Toulouse III - Paul Sabatier. (2012).