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Introduction: Cathode catalyst layer (CL)

- Pt dispersed on a porous C support to maximize the active surface area

Oxygen Reduction Reaction:

O2 + 4 H+ + 4 e-
→ 2 H2O

[1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.
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Introduction: Cathode catalyst layer (CL)

- Species transport to Pt: (i) O2 through pores

(ii) e- through C

(iii) Ionomer added for H+

Oxygen Reduction Reaction:

O2 + 4 H+ + 4 e-
→ 2 H2O

[1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.
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Introduction: Catalyst

- Pt nanoparticles deposited on Carbon Black (TEM image)

Pt

C
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Introduction: Catalyst

- Goal: Optimize the support for species transport (e.g. Carbon Xerogel)

4



Introduction: Performance

Polarization curve
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Introduction: Performance

- Nernst equation
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Introduction: Performance

- Activation loss

Activation
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Introduction: Performance

Activation

- Activation loss

- Charge transport loss
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Introduction: Performance

- Activation loss

- Charge transport loss

- Oxygen diffusion loss
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Introduction: Performance

Activation

- How to discriminate accurately ?

- How to predict the performance ?

- How to optimise ?
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Problem

- How to link the performance and the cathode CL behavior ?

- How to obtain diffusion and conductivity properties ?

[1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.
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Problem

1st study:

- Experimental strategy

- Numerical model

[1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.
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Experimental strategy

- Manufacture PEM fuel cells with different CL architectures

- Pt located only on a portion of the cathode catalyst layer:
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Manufacture & Characterization

CL manufacture: 

Spray deposition on the PEM
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Manufacture & Characterization

CL manufacture: 

Spray deposition on the PEM

Characterization: 

Assembly clamped in a cell
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Reproducibility

- PEM fuel cells with 50% wt. Pt/C Black 

(Loading: 0.33 mgPt cm-2, I/C=0.8)

- Nearly perfect reproducibility
Full active CLPEM
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Results 1

Case a: Case b: Case c:
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Results 1

Case a: Case b: Case c:

- Large impact of    

the CL ionic

resistivity
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Results 2

Case a: Case b: Case d:
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- How is the CL ionic conductivity impacting the performance ?

Experimental strategy
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Case b:Case b2: Case c:

Results 3
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Case b:Case b2: Case c:

Results 3
13

Resistivity:

525±25 Ω cm



Numerical model
14

Assumptions: 

- No electric loss (carbon black)

- No diffusion loss (at low current)
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Numerical model
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Assumptions: 

- No electric loss (carbon black)

- No diffusion loss (at low current)

To find:

- i0
- b

- Ionic resistivity



Kinetics parameters with O2

Tafel law at low current:

b = 0.0700 V/dec

i0 = 0.0192 A

Full active CLPEM
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Resistivity 1

Resistivity:

73 Ω cm

(Experimentaly: 525 Ω cm)

Full active CLPEM
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Resistivity 2

PEM Mix 

1/5 Pt/C – 4/5 C
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Resistivity 2

Resistivity:

139 Ω cm

PEM Mix 

1/5 Pt/C – 4/5 C
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Conclusion

Link the CL behavior and the performance of the PEM 

fuel cell

15/17
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Conclusion

Link the CL behavior and the performance of the PEM 

fuel cell

Experimental:

Large impact of CL ionic resistivity

→ Ionic R for inactive layer: 525 Ω cm

Numerical:

→ Ionic R for active layer: 73 Ω cm

Ionic R for partially active layer: 139 Ω cm
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Perspectives

Model homemade catalyst on Carbon Black
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Change the support material: Carbon Xerogel
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- Layer deposition
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Perspectives

Model homemade catalyst on Carbon Black

Change the support material: Carbon Xerogel

- Synthesis

- Layer deposition

- Fuel cell characterization

Improve the model: diffusion, electric resistivity and EIS
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Thank you !





Annexe

Case a: Case b: Case e:



Annexe

Case a: Case a(1.6):

N/C = 0.8 N/C = 1.6
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Annexe: CL active surface area

Case b:Case b2: Case c:


