Determination of the cathode catalyst layer limitations inside the PEM fuel cell

Tom Servais, Nathalie Job

Introduction: PEM fuel cell

Oxygen Reduction Reaction:

 $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

Pt dispersed on a porous C support to maximize the active surface area

Oxygen Reduction Reaction:

 $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

Membrane catalyst layer Gas diffusion layer [1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.

- Species transport to Pt: (i) O₂ through pores

Membrane catalyst layer Gas diffusion layer [1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.

Species transport to Pt: (i) O₂ through pores
(ii) e⁻ through C

NCE

CHEMICAL ENGINEERING Oxygen Reduction Reaction:

 $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

Oxygen Reduction Reaction:

 $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

Membrane catalyst layer Gas diffusion layer [1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.

Species transport to Pt: (i) O₂ through pores
(ii) e⁻ through C
(iii) lonomer added for H⁺

Introduction: Catalyst

- Pt nanoparticles deposited on Carbon Black (TEM image)

Introduction: Catalyst

- Goal: Optimize the support for species transport (e.g. Carbon Xerogel)

Polarization curve

- Nernst equation

- Activation loss

- Activation loss
- Charge transport loss

- Activation loss
- Charge transport loss
- Oxygen diffusion loss

- How to discriminate accurately ?
- How to predict the performance ?
- How to optimise ?

CHEMICAL ENGINEERING

Problem

ICF

CHEMICAL ENGINEERING

- How to link the performance and the cathode CL behavior ?
- How to obtain diffusion and conductivity properties ?

Problem

[1] K. Scott, Functional materials for sustainable energy applications, Woodhead, 2012.

1st study:

- Experimental strategy
- Numerical model

NCE

CHEMICAL

ENGINEERING

- Manufacture PEM fuel cells with different CL architectures
 - Pt located only on a portion of the cathode catalyst layer:

- Manufacture PEM fuel cells with different CL architectures
 - Pt located only on a portion of the cathode catalyst layer:
 - Case a: Pt only close to the PEM

- Manufacture PEM fuel cells with different CL architectures
 - Pt located only on a portion of the cathode catalyst layer:
 - Case a: Pt only close to the PEM

- Manufacture PEM fuel cells with different CL architectures
 - Pt located only on a portion of the cathode catalyst layer:
 - Case a: Pt only close to the PEM
 - Case b: Pt only away from the PEM

- Manufacture PEM fuel cells with different CL architectures
 - Pt located only on a portion of the cathode catalyst layer:
 - Case a: Pt only close to the PEM
 - Case b: Pt only away from the PEM

Manufacture & Characterization

CL manufacture: Spray deposition on the PEM

Manufacture & Characterization

CL manufacture: Spray deposition on the PEM

Characterization: Assembly clamped in a cell

ICF

CHEMICAL ENGINEERING

Reproducibility

- PEM fuel cells with 50% wt. Pt/C Black (Loading: 0.33 mg_{Pt} cm⁻², I/C=0.8)
- Nearly perfect reproducibility

CHEMICAL ENGINEERING

10

• • • ENGINEERING

- How is the CL ionic conductivity impacting the performance ?

- How is the CL ionic conductivity impacting the performance ?
 - Pt located only on a portion of the cathode catalyst layer:
 - Case b: Pt only away from the PEM

- How is the CL ionic conductivity impacting the performance ?
 - Pt located only on a portion of the cathode catalyst layer:
 - Case b: Pt only away from the PEM

- How is the CL ionic conductivity impacting the performance ?
 - Pt located only on a portion of the cathode catalyst layer:
 - Case b: Pt only away from the PEM
 - Case b2: Pt only away from the PEM (inactive part x2)

- How is the CL ionic conductivity impacting the performance ?
 - Pt located only on a portion of the cathode catalyst layer:
 - Case b: Pt only away from the PEM
 - Case b2: Pt only away from the PEM (inactive part x2)

CHEMICAL

ENGINEERING

ENGINEERING

13

Numerical model

Assumptions:

- No electric loss (carbon black)
- No diffusion loss (at low current)

Numerical model

Assumptions:

- No electric loss (carbon black)
- No diffusion loss (at low current)

- Proton conduction + kinetics :

Numerical model

Assumptions:

- No electric loss (carbon black)
- No diffusion loss (at low current)

- Proton conduction + kinetics :

To find:

- i₀

- b
- Ionic resistivity

CHEMICAL ENGINEERING

Kinetics parameters with O₂

CF

CHEMICAL ENGINEERING

Resistivity 1

Resistivity 2

NCE

CHEMICAL

ENGINEERING

Resistivity 2

ICF

ENGINEERING

CHEMICAL

_____ 17

Link the CL behavior and the performance of the PEM fuel cell

Link the CL behavior and the performance of the PEM fuel cell

Experimental:

Large impact of CL ionic resistivity

→ Ionic R for inactive layer: 525 Ω cm

Link the CL behavior and the performance of the PEM fuel cell

Experimental:

Large impact of CL ionic resistivity

 \rightarrow Ionic R for inactive layer: 525 Ω cm

Numerical:

→ Ionic R for active layer: 73 Ω cm Ionic R for partially active layer: 139 Ω cm

Perspectives

Model homemade catalyst on Carbon Black

Perspectives

Model homemade catalyst on Carbon Black

Change the support material: Carbon Xerogel

- Synthesis
- Layer deposition
- Fuel cell characterization

Perspectives

Model homemade catalyst on Carbon Black

Change the support material: Carbon Xerogel

- Synthesis
- Layer deposition
- Fuel cell characterization

Improve the model: diffusion, electric resistivity and EIS

Thank you !

CHEMICAL

ENGINEERING

Annexe: CL active surface area

CHEMICAL ENGINEERING