

INSTITUT DE RECHERCHES SUR LA CATALYSE ET L'ENVIRONNEMENT

Jesús González-Cobos, <u>Antoinette Boreave</u>, Rohib Rohib, Anthony Vivien, Chloé Thieuleux, Laurent Veyre, Essyllt Louarn, Valérie Meille, Mathieu Prévot, Philippe Vernoux

PLAN de l'exposé

- Introduction
- Etats de l'art : électro-oxidation de l'isopropanol (IPA)
- Objectifs
- Montage expérimental
- Résultats PtRu/C, Etat de l'Art
- Synthèse de catalyseurs à base de Pt/C
- Résultats électrocatalytiques
 - PtC et PtRu commerciaux
 - Mesure de la sélectivité
- Conclusions et Perspectives

H₂, vecteur d'énergie:

- Alternative aux énergies fossiles
- Densité énergétique gravimétrique élevée (33,3 kWh/kg), inversement basse densité d'énergie volumique
- Respectueux de l'environnement (sources renouvelables)
- Stockage, manipulation et transport, compliqué

rcelvon

Une solution Liquid Organic Hydrogen Carriers (LOHC)

- Liquide stable à haute temperature
- Sûr
- Propre
- non-toxique
- Recyclable
- Haute densité d'énergie volumique
- Stockage et transport facilté (utilisation des infrastructures existantes

3

- Valorisation des produits possible

E.g., Dibenzyltoluene (H0-DBT) / Perhydro dibenzyltoluene (H18-DBT)*

*D. Geburtig et Al, IJHE, Volume 41, Issue 2, 12 January 2016, Pages 1010-1017

LOHC : HO-DBT / H18-DBT

- Capable de transférer l'Hydrogène*
- 6,2% en poids de H₂ stocké *
- Produit en grande quantité (liquide de refroidissement)
- Facilité de stockage de H₂ et de transport
- Stable à haute temperature (max 390°C)
- Valorisation des produits possible

Couplage⁺ de la réaction de transfert de l'hydrogène (THR) avec une pile à combustible à isopropanol direct (DIFC)

- Augmenter l'efficacité énergétique (enthalpies contre balancées)⁺
- Eviter le stockage de l'hydrogène⁺ moléculaire

Restitution de H2 pour la production d'énergie.

*D. Geburtig et Al, IJHE, Volume 41, Issue 2, 12 January 2016, Pages 1010-1017 *Sievi, G. et al., Energy Environ. Sci., 2019, 12, 2305

Utilisation d'un liquide organique pour transporter l'H2 → restitution de l'H2 pour produire de l'énergie

Couplage de la réaction de transfert de l'hydrogène (THR) avec une pile à combustible à isopropanol direct (DIFC)

G. Sievi et al., Energy Environ. Sci., 2019, 12, 2305

Utilisation d'un liquide organique pour transporter l'H2 → restitution de l'H2 pour produire de l'énergie

Couplage de la réaction de transfert de l'hydrogène (THR) avec une pile à combustible à isopropanol direct (DIFC)

G. Sievi et al., Energy Environ. Sci., 2019, 12, 2305

Isopropanol (IPA) vs. autres fuels organiques

Pile à Combustible	Potentiel standard de la pile (V) / SCE	Réaction à l'anode
Hydrogène	1,23	$H_2 \rightarrow 2 H^+ + 2 e^-$
Isopropanol direct	1,07	$C_3H_8O \rightarrow C_3H_6O + 2 H^+ + 2 e^-$
Ethanol direct	1,15	$C_2H_6O + H_2O \rightarrow CO_2 + 8 H^+ + 8 e^-$
Méthanol direct	1,21	$CH_3OH + H_2O \rightarrow CO_2 + 6 H^+ + 6 e^-$
Acide formique direct	1,45	$\rm HCOOH \rightarrow \rm CO_2 + 2 \ H^+ + 2 \ e^-$

(Réaction à la cathode: $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$)

Isopropanol (IPA) vs. autres fuels organiques

Pile à Combustible	Potentiel standard de la pile (V) / SCE	Réaction à l'anode
Hydrogène	1,23	$H_2 \rightarrow 2 H^+ + 2 e^-$
Isopropanol direct	1,07	$C_3H_8O \rightarrow C_3H_6O + 2 H^+ + 2 e^-$
Ethanol direct	1,15	$C_2H_6O + H_2O \rightarrow CO_2 + 8 H^+ + 8 e^-$
Méthanol direct	1,21	$CH_3OH + H_2O \rightarrow CO_2 + 6 H^+ + 6 e^-$
Acide formique direct	1,45	$\rm HCOOH \rightarrow \rm CO_2 + 2 \ H^+ + 2 \ e^-$

Son potentiel standard plus bas ne l'avantage pas

(Réaction à la cathode: $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$)

Isopropanol (IPA) vs. autres fuels organiques

Isopropanol (IPA) vs. autres fuels organiques

Pile à Combustibl	Potentiel standard de la pile (V) / SCE	Réaction à l'anode	OCV (à 50°C) (V)
Hydrogène	1,23	$H_2 \rightarrow 2 H^+ + 2 e^-$	-
Isopropanol direct	1,07	$C_3H_8O \rightarrow C_3H_6O + 2 H^+ + 2 e^-$	0,81
Ethanol direct	1,15	$C_2H_6O + H_2O \rightarrow CO_2 + 8 H^+ + 8 e^-$	0,53
Méthanol direct 0.8	anode PtRu/C , mer	mbrane Nafion [®] 115 $\rightarrow CO_2 + 6 H^+ + 6 e^-$	0,58
Acide formique (0.7	Methanol	Ethylene glycol $D_2 + 2 H^+ + 2 e^-$	0,64
> 0.6 0.5 0.4 0.4 0.3 0.2 0.1 0.1	Formic acid 2-Propanol Ethanol 20 40 60 80 Current density, mA cm	1-Propanol Acetaldehyde → Instabilité → Reste le m	V le plus haut à 50°C en dessous de 0,6 V ioins performant

Isopropanol (IPA) vs. autres fuels organiques

Pile à Combustible	Potentiel standard de la pile (V) / SCE	Réaction à l'anode	OCV* (50°C) (V)
Hydrogène	1,23	$H_2 \rightarrow 2 H^+ + 2 e^-$	-
Isopropanol direct	1,07	$C_3H_8O \rightarrow C_3H_6O + 2 H^+ + 2 e^-$	0,81
Enaconclusion :	1,15	$C_2H_6O + H_2O \rightarrow CO_2 + 8 H^+ + 8 e^-$	0,53
Méthanol direct	1,21	$CH_3OH + H_2O \rightarrow CO_2 + 6 H^+ + 6 e^-$	0,58
Acide formique direct $1,45$ HCOOH $\rightarrow CO_2 + 2$ H ⁺ + 2 e ⁻ $0,64$ <u>Il peut facilement être couplé avec des LOHC grâce à la réaction réversible</u>			
Acétone/IPA. (acétone non dégradé peut être recyclé)			
Acétone à la place de CO ₂ donc pas de CO adsorbé sur le catalyseur			

Points négatifs

- ➡ La pile à combustible à IPA Direct est moins performante
- Empoisonnement par l'acétone
- ➡ Instabilité en dessous de 0.6 V

ETAT de l'Art Etude de l'électro-oxidation de l'IPA en milieu acide, dans la littérature

Catalyseur : Pt-Ru

Pt-Ru vs. Pt

- Potentiels de démarrage plus faibles
- Courants maximal plus élevés
- Empoisonnement moindre par l'adsorption d'acétone

Pt-Ru (differents rapports)

Ici, la meilleure composition est Pt₃₅Ru₆₅

Lee, C.-G. et al., Electrochimica Acta, 2008, 53, 3029

ETAT de l'Art Etude de l'électro-oxidation de l'IPA en milieu acide, dans la littérature

Publications	Catalyseurs
Lee, CG. et al, J. Power Sources, 2006, 106, 78	Pt/C (45.0 wt.% Pt), Pt ₂ Ru ₃ /C (29.8 wt.% Pt, 23.1 wt.% Ru)
Kormányos, A. et al, ACS Catal., 2020, 10, 10858	Pt ₅₀ Ru ₅₀ /C
Santasalo-Aarnio, A. et al., Electrochimica Acta, 2013, 87, 730	Pt/C (60 wt.% Pt), PtRu/C (40 wt.% Pt, 20 wt.% Ru)
Khanipour, P. et al., ACS Appl. Mater. Interfaces, 2020, 30, 33679	Pt/C, PtRu/C (different rapports de Pt/Ru)
Figueiredo, M.C. et al., J. Power Sources, 2015, 275, 341	Pt/C (2.3 mg Pt cm ⁻²), Pt-Bi/C (2 mg Pt cm ⁻² , 0.7 mg Bi cm ⁻²), Pt/C (2 mg Pt cm ⁻² , 0.7 mg Sb cm ⁻²)
Chelaghmia, M.L. et al., RSC Adv., 2020, 10, 36941.	Pt/graphite et Pt-Ni/graphite par un procédé d'électrodéposition
Chu, YH. et al., Int. J. Hydrogen Energy, 2010, 35, 11261	Pt-Ru-Sn/C
onzález-Cobos, J. et al., J. Phys. Che. C., 2016, 120, 7155 (alkaline media)	Pt/C, Pt_9Bi_1/C , déposé par une méthode de microémulsion

OBJECTIFS

Comprendre pour améliorer l'efficacité de la réaction d'électro–oxydation de l'isopropanol en milieu acide (H+)

- 1. Etude de Pt et PtRu (commercial)
 - Potentiels de démarrage plus faibles
 - Courants maximum plus élevés
 - Empoisonnement moindre par l'adsorption d'acétone
- 2. Comparaison entre différents catalyseurs Pt/C

- → Differentes conditions expérimentales:
 - variation de la concentration en IPA,
 - variation de la température
- → Reproductibilité
- \rightarrow Optimization de la synthèse

Réaction à l'anode: $C_3H_8O \rightarrow C_3H_6O + 2H^+ + 2e^-$

Réaction à la cathode: $2H^+ + 2e^- \rightarrow H_2$

🛞 Ircelyon

Potentiostat

Voltalab (PGZ402)

Bain thermosté

la température

pour le contrôle de

Voltammétrie Cyclique (CV)

-Variation du potentiel

-Choix de la vitesse

Chrono Amperometrie (CA)

-Potentiel stable

-Choix du temps

-Avec régénération vs sans régénération

Voltamétrie cyclique : exemple du PtRu/C, 25 °C, 0,2 M IPA

Chrono-ampérométrie

Protocole de Régénération:

Résultats – PtRu/C, étude de la régénération

Chrono-ampérométrie à différent potentiels espacés par des étapes de régénération

20

Résultats – PtRu/C, Etat de l'art

1. Résultats précédents

Ircelyon

Chronoampérométrie à differents potentiels espacé par des étapes de régénérationCatalyseur PtRu/C(la régénération permet de retrouver l'état initial avant application d'un nouveau25 °Cpotentiel)0.2 M IPA

Pt et Ru présents en solution en quantité négligeable, voire en dessous de la limite de détection pour le Pt.

Résultats – PtRu/C, Influence de la concentration

1. Résultats précédents

Résultats – PtRu/C, Influence de la température

1. Résultats précédents

Optimum température: 60°C (P1) or 40°C (P2)

Chrono-ampérométrie

Résultats – PtRu/C

2. Etude de la reproductibilité

Résultats – PtRu/C vs Pt/C

3. Comparaison entre PtRu/C vs. PtC/C (catalyseurs commerciaux)

Voltammétrie cyclique 5 mV/s

Résultats – PtRu/C

- 4. Conclusions relative à l'état de l'art sur les catalyseurs
- PtRu/C montre de meilleures performance en terme de stabilité à bas potentiel (Pic P1)
- Les conditions opératoires optimales pour obtenir un maximm de densité de courant
 - Température pour favoriser P1 de 60°C
 - Température pour favoriser P2 de 40°C
 - Concentration en IPA entre 0-1M
- Les tests de reproductibilité : differences observées peuvent être attribuées à la non homogénéité des catalyseurs Pt et PtRu déposés sur le tissu de carbone ou à la dégradation de ce dernier dans le temps.

Synthèse des catalyseurs – PtC/C

Synthèse de nanoparticules de Pt en solution Imprégnation sur le C des nanoparticules de Pt

Calcination

Pulvérisation sur tissu de Carbone

Objectif : préparer des Nano-particles de Pt

Synthèse de la nanoparticules de Platine (VIVIEN Anthony, CPE)

Bis(dibenzylideneacetone)platinum Pt(dba)₂ (C34H28O2Pt) Pt(dba)₂ Toluene, r.t, 24 h

Pt NPs

For 3000 ppm :

- Pt(dba)₂: 883 mg (1,33 mmoles, 1 equiv.)
- *n*-octylsilane : 386 μL (1,995 mmoles, 1,5 equiv.)
- Toluene : 100 mL
- > 3000 ppm = 3g/kg (here 259 mg (for 883 mg of $Pt(dba)_2$) of Pt in 86,7 g (for 100 mL) of Toluene)

Size = 1,5 ± 0,2 nm

Synthèse des catalyseurs – PtC/C

Synthèse de nanoparticules de Pt en solution Imprégnation du C par le Pt

Calcination

tion 📃

Spray sur tissu de Carbone

Objectif: déposer du Pt sur le C

- 0.3 g de Carbon vulcan, 1h au rotavapor à l'ambiante
- 3 préparations, on ajoute respectivement:
 5% : 5.26 g de solution de Pt
 10% : 11.1 g de solution de Pt
 20% : 25 g de solution de Pt
- 1h sous vide partiel à 90°C
- 80°C durant la nuit pour éliminer le toluène

Synthèse des catalyseurs – PtC/C

Synthèse de nanoparticules de Pt en solution

le Impregnation of Pt Calcination Spray on Carbon cloth

Objectif : éliminer les composés organiques encore présents

~ 0.1 g de Pt/C après imprégnation utilisé pour la calcination

Condition de chauffage : $1^{\circ}C/min, 1\%O_2$ $250 \ ^{\circ}C$ for 1h, $350 \ ^{\circ}C$ for 1h,

Synthèse des catalyseurs – PtC/C - Prétraitement

TPO 1%O₂/He 30cm³.min⁻¹: Mesure de la quantité de CO₂ produite pendant l'oxydation de ~ 0.1 g d'échantillon

Sample	Theoritique (mg)	mesuré (mg)	Error
Pt/C_5wt	1.30	1.28	0.8 %
Pt/C_10wt%	1.93	1.92	0.5 %
Pt/C_20wt%	3.05	2.63	14 %

Synthèse des catalyseurs – PtC/C - Prétraitement

TPO 1%O₂/He 30cm³.min⁻¹: Mesure de la quantité de CO₂ produite pendant l'oxydation de ~ 0.1 g d'échantillon

Sample	Theoritique (mg)	mesuré (mg)	Error
Pt/C_5wt	1.30	1.28	0.8 %
Pt/C_10wt%	1.93	1.92	0.5 %
Pt/C_20wt%	3.05	2.63	14 %
	7	4	

Conditions Insuffisantes pour Pt/C_20wt%

Perspectives en synthèse des catalyseurs – PtC/C

Synthesis of the Platinium solution

Impregnation of Pt

Calcination

Pulvérisation sur Carbon Vulcan XC-72

Dernière étape: déposer PtC sur le tissu de carbone (Carbon Vulcan XC-72)

- Encre : Catalyseur + Nafion solution (0.1 g Nafion/1 g Catalyseur) dans de l'IPA
- 2h aux ultrasons
- 2 mg/cm2 de catalyseurs
- N₂ comme agent dispersant
- Sous l'extracteur
- Pour finir 1h at 80°C

Résultats – PtRu/C – Mesure de la sélectivité

33

Résultats – PtC/C – Mesure de la sélectivité

Configuration de la pile		
Electrode area / cm2	6,25	
Anode	PtRu/Carbon cloth (commercial)	
Cathode	PtRu/Carbon cloth (commercial)	
Anode catalyst loading / mg cm-2	2	
Membrane	Nafion	
Temperature / ºC	25	
Anolyte	1 M H2SO4 + 0.2 M IPA	
Catholyte	1 M H2SO4	
N2 flow (each) / mL min-1	30	

Choix de la Pile à combustible à membrane échangeuse de protons :

- Electrodes plus grandes : 6,25 cm² au lieu de 1 cm²
- Le débit est plus important et favorise la collecte.

- On ne mesure que du H_2 à la cathode par QMS en ligne : on observe un dégagement gazeux.
- On ne mesure seulement de l'acétone à l'anode par HPLC et on n'observe pas de dégagement gazeux

Conclusion et Perspectives

- Améliorer les conditions de prétraitement du Pt/C_20wt%
- Tester les catalyseurs synthétisés au laboratoire dans la réaction d'électro-oxidation de l'IPA
- Réaliser sur notre catalyseur Pt/C l'addition d'un 2^{ème} métal (Ru, Sn, par exemple)
- Etudier en détail le phénomène de désactivation
- Etude de la pile à combustible à IPA direct couplée à LOHC

Jesús González-Cobos, Rohib Rohib, Anthony Vivien, Chloé Thieuleux, Laurent Veyre, Essyllt Louarn, Valérie Meille, Mathieu Prévot, Philippe Vernoux

ANR SAFHYR

Merci pour votre attention

