

Characterizing membrane hydration in a microfluidic polymer electrolyte membrane water electrolyzer via operando synchrotron Fourier-transform infrared spectroscopy

<u>Kevin Krause</u>, Marine Garcia, Dominique Michau, Brant Billinghurst, Gérald Clisson, Jean-Luc Battaglia, Stéphane Chevalier

Context

Compared to other water electrolyzers, polymer electrolyte membrane (PEM) electrolyzers have:1

- Benefits: (1) higher current density operation (2) high energy efficiency
 (3) high product gas purity
 (4) a high dynamic range (ideal for intermittent energy)
- Drawbacks: (1) high capital costs

(2) ideal performance at 50 °C - 80 °C

Optimizing proton transport within the PEM would reduce costs

Context

- X-ray and neutron imaging techniques are often used to characterize operando PEM characteristics, but also damage it in the process^{1,2}
- Infrared characterization is safe due to the low beam energy levels, but suffer from short penetrative path lengths
 - IR is highly sensitive to water attenuation
- Microfluidics are a potential solution
 - Conforms to short IR path lengths
 - Precise control of operating parameters

Objectives

- Develop a microfluidic PEM electrolyzer that is semi-transparent in IR
- Characterize losses attributed to the PEM in an electrolyzer
- Observe the operando membrane water content via synchrotron FTIR spectroscopy

¹ J. Roth, J. Eller and F. N. Büchi, *J. Electrochem. Soc.*, 2012, **159**, F449–F455. ² J. Eller and F. N. Büchi, *J. Synchrotron Radiat.*, 2014, **21**, 82–88.

Fabrication – material selection

- Components that are semi-transparent in far-IR, allowing us to isolate PEM's transmission
- We use a stack of 4 layers:
 - Cap double-side polished silicon wafer (279 μm thick)
 - Aquivion PEM (E87-05S)
 - PDMS film (38 µm thick)
 - Channel dimensions of 1.8 mm width, 15 mm length, 38 μ m height, with channels spaced 500 μ m apart
 - Base double-side polish silicon wafer
 - Sputtered with ~60 nm thick titanium adhesion layer, and then ~300 nm thick platinum electrodes, with electrodes 1.2 mm apart

kevin.krause@u-bordeaux.fr

Experimental setup

- Synchrotron facilities have extremely sensitive equipment, allowing us to capture water attenuation through the PEM
 - We traveled to the Canadian Light Source (Saskatoon, Canada) for the partnership between CNRS and the University of Toronto

Water quantification

Université

ET D'INGÉNIERIE

The acquired IR spectra are processed via the Beer Lambert Law to quantify the change in water thickness

Experimental conditions

- Remaining objectives
 - > Characterize losses (specifically ohmic and mass transport) attributed to the PEM in an electrolyzer
 - Observe the operando membrane water content via synchrotron FTIR spectroscopy
- Controlled parameters:
 - Current density
 - Increasing from OCV in steps of 25 mA cm⁻² until potential response exceeds 5 V
 - Staircase Galvano Electrochemical Impedance Spectroscopy (SGEIS) is performed between each applied current to estimate ohmic losses
 - > Two flow rates (20 and 100 μ L min⁻¹) for 0.5 mol L⁻¹ H₂SO₄ reactant
 - Low flow rate is chosen to induce reactant-starving mass transport dominated overpotentials
 - High flow rate is chosen to drive ohmic-dominated overpotential
 - Three temperatures (20, 40, and 60 °C)
 - ► Higher temperatures are associated with improved performance
 - Varied to observe membrane behavior at each condition

Results - electrochemical performance

Polarization curves of results:

8

Results – ohmic resistance

- Ohmic resistance is one order of magnitude higher than commercially relevant electrolyzers (e.g. <300 mΩ cm²)
- Large uncertainty in measurements is due to small active area

Si

PEM

Si

Active area = 0.08 cm^2

H⁺

////////

Results – change in water saturation

For 20 μL min⁻¹

 Gas saturation increases significantly immediately before cell failure at 75 mA cm⁻²

> Membrane drying occurs in parallel with cell failure

Most membrane drying at 20 °C, least membrane drying at 40 °C

For 100 μL min⁻¹

ÉCANIQUE T D'INGÉNIERIE

Membrane drying only occurs at 20 °C

niversité

Spectroscopic results may be limited to local information

Summary

- Developed a microfluidic PEM electrolyzer that is semi-transparent in IR
- Characterized losses in the electrolyzer
 - Higher temperatures achieve higher current densities
- Quantified membrane water content using synchrotron FTIR spectroscopy
 - Mass transport driven membrane drying occurs with cell failure at low reactant flow rates
- Transitioning to IR imaging
 - Implement our setup in Mid-IR for improved transmittance

IR imaging

úniversité [®]BORDEAUX

λ = 4 μm

kevin.krause@u-bordeaux.fr

IR imaging

ET D'INGÉNIERIE

Preliminary IR imaging shows no gradient in PEM absorbance between channels, but a change in the water thickness with the operating current density

Acknowledgements

Canadian Centre canadien de rayonnement Light Source synchrotron

université

de BORDEAUX

